Geological repository systems for the disposal of radioactive waste are based on a multi-barrier design. Individual barriers contribute in different ways to the overall long-term performance of the repository system, and furthermore, the contribution of each barrier can considerably change with time. In a systematic analysis of the functional requirements for achieving long-term safety a number of basic safety functions can be defined: physical confinement, retardation / slow release, dispersion / dilution and limited accessibility.

In the case of the geological disposal of spent fuel in a clay formation a series of barriers are designed or chosen to contribute to the realisation of the basic safety functions. The physical confinement is realised by the watertight, high-integrity container, which prevents contact between groundwater and the confined radionuclides. In first instance the retardation / slow release function is realised by the slow dissolution of the waste matrix and by the limited solubility of many elements in the near field. However, the natural clay barrier provides the main contribution to this safety function. The migration of radionuclides through the Boom Clay is mainly due to molecular diffusion, which is an extremely slow process. Furthermore, many elements are strongly sorbed by the clay minerals what makes their migration even much slower. The dispersion / dilution function mainly occurs in the aquifer and the rivers draining the aquifer in the surroundings of the disposal system. Various performance indicators are used to quantify the contributions of each safety function and to explain the functioning of the repository system.

This content is only available via PDF.
You do not currently have access to this content.