Abstract

In Belgium 57% of the electricity is presently generated by 7 nuclear units of the PWR type located in Doel and Tihange. Their total output amounts to 5632 MWe. Part of the spent fuel unloaded from the first three units has been sent till 2000 for reprocessing in the Cogema facility at La Hague. As the reprocessing of the spent fuel produced by the last four units is not covered by the contracts concluded with Cogema, Synatom, the Belgian utilities’ subsidiary in charge of the front- and back-end of the nuclear fuel cycle for all PWR reactors in Belgium, decided to study the possible solutions for a temporary storage of this spent fuel.

End of 1993, the Belgian government decided that reprocessing (closed cycle) and direct disposal (open cycle) of spent fuel had to be considered as equal options in the back-end policy for nuclear fuel in Belgium. The resolution further allowed continued execution of a running reprocessing contract (from 1978) and use of the corresponding Pu for MOX in Belgian NPP’s, but requested a reprocessing contract concluded in 1990 (for reprocessing services after 2000) not to be executed during a five-year period. During this period priority was to be given to studies on the once-through cycle as an option for spent fuel management. Figure 1 is a chart showing the two alternatives for the spent fuel cycle in Belgium.

In this context, Synatom entrusted Belgatom to develop a dedicated flask (called “bottle”) for direct disposal of spent fuel, to perform a design study of an appropriate encapsulation process and to prepare a preliminary feasibility study of a complete spent fuel conditioning plant. Meanwhile preparation works were made for the construction of an interim storage facility on both NPP sites of Doel and Tihange in order to meet increasing storage capacity needs.

For selecting the type of interim storage facility, Belgatom performed a technical-economical analysis. Considerations of design and safety criteria as well as flexibility, reversibility, technical constraints, global economical aspects and construction time led to adopt dry storage with dual purpose casks (in operation since end 1995) for the Doel site and wet storage in a modular pool for the Tihange site (in operation since 1997).

In parallel, ONRAF/NIRAS, the Belgian Agency for the management of radioactive waste and enriched fissile materials and the Belgian nuclear research centre, SCK•CEN, conduct underground investigations in view of geological disposal. The paper describes the methodology that Belgatom has developed to provide the utilities with appropriate solutions (reracking, dry storage in casks, wet storage in ponds, etc.) and how Belgatom demonstrated also the feasibility of spent fuel conditioning with a view to direct disposal in clay layers.

The spent fuel storage facilities in operation in Belgium, designed and built by Belgatom, are then briefly presented.

This content is only available via PDF.
You do not currently have access to this content.