Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-20 of 269
Compression
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Vassilis Triantopoulos, Jason B. Martz, Jeff Sterniak, George Lavoie, Dennis N. Assanis, Stanislav V. Bohac
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A013, October 20–23, 2019
Paper No: ICEF2019-7220
Abstract
Abstract Spark-assisted compression ignition (SACI) is a low temperature combustion mode that can offer thermal efficiency improvements and lower nitrogen oxide emissions compared to conventional spark-ignited combustion. However, the SACI operating range is often limited due to excessive pressure rise rates driven by rapid heat release rates. Well-controlled experiments were performed to investigate the SACI operating limits under previously unexplored boosted, stoichiometric, EGR dilute conditions, where low temperature combustion engines promise high thermodynamic efficiencies. At higher intake boost, the SACI high load limit shifted towards lower fuel-to-charge equivalence ratio mixtures, creating a larger gap between the conventional spark-ignition EGR dilution limit and the boosted SACI operating limits. Combustion phasing retard was very effective at reducing maximum pressure rise rate levels until the stability limit, primarily due to slower end-gas burn rates. Gross fuel conversion efficiency improvements up to 10% were observed by using intake boost for either load expansion or dilution extension. Changes in engine speed necessitated changes in unburned gas temperature to match autoignition timing, but were shown to have negligible impact on the heat release profile on a crank angle basis. Lower engine speeds were favorable for load expansion, as time-based peak pressure rise rates scaled with engine speed.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A014, October 20–23, 2019
Paper No: ICEF2019-7274
Abstract
Abstract Reactivity controlled compression ignition (RCCI) is an emerging premix low temperature combustion philosophy. Contemporary understanding suggests that RCCI concept with a premix high octane (low reactivity) fuel and direct injected high cetane (high reactivity) fuel ensures in-cylinder stratification of equivalence ratio as well as fuel reactivity. This stratification of reactivity coupled with partial premixing ensures simultaneous reduction of oxides of nitrogen and smoke. Furthermore, the induced delay in combustion phasing and high compression ratio ensures diffusive flames away from piston surface resulting in higher thermal efficiency. In the present work, an experimental investigation was carried out using port injected gasoline and anhydrous ethanol as low reactivity pilot fuels and direct injected diesel as high reactivity main fuel under various energy share. A comparative study of both the pilot fuels were carried out in terms of engine performance, emission and in-cylinder behavior in both representative and statistical perspective.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A006, October 20–23, 2019
Paper No: ICEF2019-7164
Abstract
Abstract Using a split injection of wet ethanol, where a portion of the fuel is injected during the compression stroke, has been shown to be an effective way to enable thermally stratified compression ignition (TSCI), an advanced, low temperature combustion (LTC) mode that aims to control the heat release process by enhancing thermal stratification, thereby extending the load range of LTC. Wet ethanol is the ideal fuel candidate to enable TSCI because it has a high latent heat of vaporization and low equivalence ratio sensitivity. Previous work has shown “early” compression stroke injections (−150 to −100 deg aTDC) have the potential to control the start of combustion while “mid” compression stroke injections (−90 to −30 deg aTDC) have the potential to control in-cylinder thermal stratification, thereby controlling the heat release rate. In this work, a mixture of 80% ethanol and 20% water by mass is used to further study the injection strategy of TSCI combustion. Additionally, the impact of external, cooled exhaust gas recirculation (EGR) and intake boost level on the effectiveness of a split injection of wet ethanol to control the heat release process are investigated. It was found that neither external, cooled EGR, nor intake boost level has any impact on the effectiveness of the compression stroke injection(s) at controlling the burn rate of TSCI. It was also seen that external, cooled EGR has the potential to increase the overall tailpipe combustion efficiency, while intake boost has the potential to decrease NO x emissions at the expense of combustion efficiency by lowering the global equivalence ratio.
Proceedings Papers
José Ramón Serrano, Francisco José Arnau, Luis Miguel García-Cuevas, Alejandro Gómez-Vilanova, Stephane Guilain, Samuel Batard
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T04A002, October 20–23, 2019
Paper No: ICEF2019-7125
Abstract
Abstract Turbocharged engines are the standard architecture for designing efficient spark ignition and compression ignition reciprocating internal combustion engines (ICE). Turbochargers characterization and modeling are basic tasks for the analysis and prediction of the whole engine system performance and this information is needed in quite early stages of the engine design. Turbocharger characteristics (efficiency, pressure ratio, mass flow rates...) traditionally rely in maps of pseudo non-dimensional variables called reduced variables. These maps must be used by reciprocating ICE designer and modeler not only for benchmarking of the turbocharger, but for a multiplicity of purposes, i.e: assessing engine back-pressure, boost pressure, load transient response, after-treatment inlet temperature, intercooler inlet temperature, low pressure EGR temperature, ... Maps of reduced variables are measured in gas-stands with steady flow but non-standardized fluids conditioning; neither temperatures nor flows. In concrete: turbine inlet gas temperature; lubrication-oil flow and temperature; water-cooling flow and turbo-machinery external heat transfer are non-standardized variables which have a big impact in assessing said multiplicity of purposes. Moreover, adiabatic efficiency, heat losses and friction losses are important data, hidden in the maps of reduced variables, which depend on the testing conditions as much as on the auxiliary fluids temperature and flow rate. In this work it is proposed a methodology to standardize turbochargers testing based in measuring the maps twice: in close to adiabatic and in diathermal conditions. Along the paper it is discussed with special detail the impact of the procedure followed to achieve said quasi-adiabatic conditions in both the energy balance of the turbocharger and the testing complexity. As a conclusion, the paper proposes a methodology which combines quasi-adiabatic tests (cold and hot gas flow) with diathermal tests (hot gas flow) in order to extract from a turbocharger gas-stand all information needed by engine designers interested in controlling or 1D-modelling the ICE. The methodology is completed with a guide for calibrating said control-oriented turbocharger models in order to separate aerodynamic efficiency (adiabatic) from heat transfer losses and from friction losses in the analysis of the turbocharger performance. The outsourced calibration of the turbocharger model allows avoiding uncertainties in the global ICE model calibration, what is very interesting for turbochargers benchmarking at early ICE-turbo matching stages or for global system analysis at early control design stages.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A007, October 20–23, 2019
Paper No: ICEF2019-7184
Abstract
Abstract Natural gas (NG) is an alternative combustible fuel for the transportation sectors due to its clean combustion, small carbon footprint, and, with recent breakthroughs in drilling technologies, increased availability and low cost. Currently, NG is better suited for spark-ignited (SI), as a gasoline replacement in conventional SI engines or as a diesel replacement in diesel engines converted to SI operation. However, the knowledge on the fundamentals of NG flame propagation at conditions representative of modern engines (e.g., at higher compression ratios and/or lean mixtures) is limited. Flame propagation inside an engine can be achieved by replacing the original piston with a see-through one. This study visualized flame activities inside the combustion chamber of an optically-accessible heavy-duty diesel engine retrofitted to NG SI operation to increase the understanding of combustion processes inside such converted engines. Recordings of flame luminosity throughout the combustion period at lean-burn operating conditions indicated that the fully-developed turbulent flame formed from several smaller-scale kernels. These small kernels varied with shapes and locations due to different flow motion around the spark location (including the effect of spark electrodes on the local flow separation), different local temperature, or different energy released in these regions. In addition, the turbulent flame was heavily wrinkled during propagation, despite it was grown from a relatively-circular kernel. Moreover, the intake swirl accelerated the flame propagation process while rotating the turbulent flame during its development. Furthermore, the flame propagation speed reduced dramatically when entering the squish region, while the direction from which the flame first touched the bowl edge changed with individual cycles. The results can help the CFD community to better develop RANS and/or LES simulations of such engines under lean-burn operating conditions.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A001, October 20–23, 2019
Paper No: ICEF2019-7103
Abstract
Abstract In this study, the problem of GCI method at low intake air temperature was solved by using gasoline-biodiesel blended fuel. Autoignition characteristics of gasoline-biodiesel blended fuel was analyzed using a rapid compression expansion machine. Gasoline-biodiesel blended fuel was mixed 20% of biodiesel with gasoline volume and spontaneous ignition characteristics were analyzed according to fuel injection timing and compression ratio. Firstly, this study investigated spontaneous ignition characteristics of gasoline-biodiesel blended fuel according to the injection timing. A compression ratio was fixed at 12, and the injection timing was delayed from −49° CA ATDC to 0° CA ATDC. The ignition delay time of the mixed fuel was decreased and the IMEP was increased as the injection timing was delayed until −10° CA ATDC. However, the ignition delay time and IMEP subtly changed when the injecting was near TDC. To investigate the auto-ignition characteristics of the gasoline-biodiesel blended fuel according to the compression ratio, the experiment tested at 10, 12, 14, and 16. At that time, the injection timing was set to −33° CA ATDC, −20° CA ATDC, −10° CA ATDC, and −0° CA ATDC. The ignition delay tended to be shorter as the injection timing was delayed at all compression ratios but IMEP calculated at CR10, 16 is good at only specific injection periods. At the compression ratios 12 and 14, the most extensive range of IMEP results were obtained.
Proceedings Papers
Sayop Kim, Joohan Kim, Ashish Shah, Pinaki Pal, Riccardo Scarcelli, Toby Rockstroh, Sibendu Som, Yunchao Wu, Tianfeng Lu
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T06A013, October 20–23, 2019
Paper No: ICEF2019-7281
Abstract
Abstract Multi-mode combustion strategies may provide a considerable thermal efficiency improvement targeted at part-load operating conditions for light-duty spark-ignition (SI) engines. The extension from boosted SI mode at high loads to advanced compression ignition (ACI) mode at low loads can be achieved by increasing compression ratio and utilizing intake air heating. In order to enable an accurate control of intake charge condition for ACI control and rapid mode-switches, it is essential to gain fundamental insight into the autoignition process with regard to thermal and fuel-air mixture stratification in the combustion chamber. In this work, a computational fluid dynamics (CFD) study is carried out to reveal some degrees of correlation between the mixture and thermal stratifications induced by the cylinder wall temperature and combustion-phasing across varying engine load conditions. The computational analysis begins with a calibrated simulation setup best matching the engine experiments, and subsequently evaluates the baseline setup for an extended range of engine load conditions for two excess-air ratio cases. The present study emphasizes the dominance of thermal stratifications for autoignition process due to wall temperature effects depending on the engine load conditions of interest. In addition, this study also aims to provide insight into the impact of mixture stratification on cyclic variability, especially at colder wall engine conditions (e.g., cold start). Observations herein provide highlight of the propensity of autoignition in correlation with mixture reactivity space.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A009, October 20–23, 2019
Paper No: ICEF2019-7182
Abstract
Abstract Existing compression ignition engines can be modified to spark ignition configuration to increase the use of natural gas in the heavy-duty transportation sector. A better understanding of the premixed natural gas combustion inside the original diesel chamber (i.e., flat-head-and-bowl-in-piston) will help improve the conversion process and therefore accelerate the diesel engine conversion. Previous studies indicated that the burning process in such engines is a two-stage combustion with a fast burning inside the bowl and a slower burning inside the squish. This paper used experimental and numerical results to investigate the combustion process at a more advanced spark timing representative of ultra-lean medium-load operation, which placed most of the combustion inside the compression stroke. At such operating conditions, the high turbulence intensity inside the squish region accelerated the flame propagation inside the squish region to the point that the burn inside the bowl separated less from that inside the squish region. However, several individual cycles produced a double-peak energy-release with the peak locations closer to the only one heat release peak seen in the average cycle. Moreover, RANS CFD simulations indicated that the time at which the flame entered the squish region was near the peak location of the energy-release process for the conditions investigated here. As a result, the data suggests that the double-peak seen in the apparent heat release rate was the result of the cycle-by-cycle variation in the flame propagation.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T05A006, October 20–23, 2019
Paper No: ICEF2019-7199
Abstract
Abstract Future emission regulations for Internal Combustion Engines require increasingly stringent reductions of engine-out emissions, especially NOx and particulate matter, together with the continuous improvement of engine efficiency. In the current scenario, even though compression-ignited engines are still considered the most efficient and reliable technology for automotive applications, the use of Diesel-like fuels has become a critical issue, since it is usually not compatible with the required emissions reduction. A large amount of research and experimentation is being carried out to investigate the combined use of compression-ignited engines and gasoline-like fuels, which proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. This work investigates the combustion process occurring in a light-duty compression-ignited engine while directly injecting only gasoline. A specific experimental setup has been designed to guarantee combustion stability over the whole operating range, that is achieved controlling boost pressure and temperature together with all the injection parameters of the multi-jet pattern. The analysis of the experimental data clearly highlights how the variation of the control parameters affect the ignition process of small amounts of directly injected gasoline and the maximum achievable efficiency. In particular, the analysis of the sensitivity to the injection parameters allows identifying an ignition delay model and the key control parameters that might be varied to guarantee a robust control of combustion phasing within the cycle.
Proceedings Papers
Valentin Soloiu, Cesar E. Carapia, Justin T. Wiley, Jose Moncada, Remi Gaubert, Aliyah Knowles, Marcel Ilie, Mosfequr Rahman
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A010, October 20–23, 2019
Paper No: ICEF2019-7226
Abstract
Abstract The focus of this study is to reduce harmful NO x and soot emissions of a compression ignition (CI) engine using reactivity-controlled compression ignition (RCCI) with n-Butanol. RCCI was achieved with the port fuel injection (PFI) of a low reactivity fuel, n-butanol, and a direct injection (DI) of the highly reactive fuel ULSD #2 (Ultra Low Sulfur Diesel) into the combustion chamber. The reactivity, ID, and CD where determined using a Constant Volume Combustion Chamber (CVCC) where ID for n-butanol was found to be 15 times slower than ULSD. The emissions and combustion analysis was conducted at 1500 RPM at an experimental low engine load of 4 bar IMEP; the baseline for emissions comparison was conducted using conventional diesel combustion (CDC) with an injection timing of 16° BTDC at a rail pressure of 800 bar. RCCI was conducted utilizing 75% by mass PFI of n-butanol with 25% ULSD DI, showed a simultaneous reduction of both NO x and soot emissions at a rate of 96.2% and 98.7% respectively albeit with an increase in UHC emissions by a factor of 5. Ringing Intensity was also significantly reduced for Bu75ULSD25 (RCCI Experiment) with a reduction of 62.1% from CDC.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A003, October 20–23, 2019
Paper No: ICEF2019-7149
Abstract
Abstract Upcoming CO 2 legislation in Europe is driving heavy-duty vehicle manufacturers to develop highly efficient engines more than ever before. Further improvements to conventional diesel combustion, or adopting the reactivity controlled compression ignition concept are both plausible strategies to comply with mandated targets. This work compares these two combustion regimes by performing an optimization on both using Design of Experiments. The tests are conducted on a heavy-duty, single-cylinder engine fueled with either only diesel, or a combination of diesel and gasoline. Analysis of variance is used to reveal the most influential operating parameters with respect to indicated efficiency. Attention is also directed towards the distribution of fuel energy to quantify individual loss channels. A load-speed combination typical for highway cruising is selected given its substantial contribution to the total fuel consumption of long haul trucks. Experiments show that when the intake manifold pressure is limited to levels that are similar to contemporary turbocharger capabilities, the conventional diesel combustion regime outperforms the dual fuel mode. Yet, the latter displays superior low levels of nitrogen oxides. Suboptimal combustion phasing was identified as main cause for this lower efficiency. By leaving the intake manifold pressure unrestricted, reactivity controlled compression ignition surpasses conventional diesel combustion regarding both the emissions of nitrogen oxides and indicated efficiency.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T07A002, October 20–23, 2019
Paper No: ICEF2019-7118
Abstract
Abstract The purpose of this study is to develop an artificial neural network (ANN) model for performance prediction of a variable compression ratio gasoline port fuel injection spark ignition engine. For ANN modeling, a large experimental data set was generated in which at random 85% was assigned for training the network, and 15% that are not included during the training process was used for testing the network. A multilayer perception feed forward neural network was used to predict the correlation between input and output layer. The input layer consists of engine speed, throttle position, spark timing, and compression ratio. Whereas, the output layer consists of torque, brake power and indicated mean effective pressure (IMEP). Neurons in the hidden layer were varied and optimized based on a specified goal error. A standard supervised back propagation learning algorithm was used in which the error between the target and network output was calculated and minimized. In the hidden and output layers, a non-linear tan-sigmoid and a linear transfer function were used, respectively, for input-output mapping. The performance of the network was evaluated by statistical parameters like correlation coefficient (R), mean relative error (MRE) and root mean square error (RMSE). It was found from the test data that the R and MRE values are lies in between 0.99853 to 0.99875 and 0.42% to 0.58%, respectively. Whereas, RMSE value for all performance parameters was found to be very low. Hence, this study reveals that the application of ANN modeling has the ability to predict the performance of a variable compression ratio gasoline engine and is the best alternative tool over all classical modeling techniques.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A004, October 20–23, 2019
Paper No: ICEF2019-7155
Abstract
Abstract This study computationally investigates the potential of utilizing gasoline compression ignition (GCI) in a heavy-duty diesel engine to address a future ultra-low tailpipe NOx standard of 0.027 g/kWh while achieving high fuel efficiency. By conducting closed-cycle, full-geometry, 3-D computational fluid dynamics (CFD) combustion simulations, the effects of piston bowl geometry, injector spray pattern, and swirl ratio (SR) were investigated for a market gasoline. The simulations were performed at 1375 rpm over a load range from 5 to 15 bar BMEP. The engine compression ratio (CR) was increased from 15.7 used in previous work to 16.5 for this study. Two piston bowl concepts were studied with Design 1 attained by simply scaling from the baseline 15.7 CR piston bowl, and Design 2 exploring a wider and shallower combustion chamber design. The simulation results predicted that through a combination of the wider and shallower piston bowl design, a 14-hole injector spray pattern, and a swirl ratio of 1, Design 2 would lead to a 2–7% indicated specific fuel consumption (ISFC) improvement over the baseline by reducing the spray-wall interactions and lowering the in-cylinder heat transfer loss. Design 1 (10-hole and SR2) showed a more moderate ISFC reduction of 1–4% by increasing CR and the number of nozzle holes. The predicted fuel efficiency benefit of Design 2 was found to be more pronounced at low to medium loads.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A019, October 20–23, 2019
Paper No: ICEF2019-7292
Abstract
Abstract Increasingly restrictive limits on Oxides of Nitrogen - NOx levels and desire for low methane emissions from gas engines are driving the change from lean-burn to stoichiometric combustion strategies on heavy-duty on-highway natural gas engines in order to take advantage of inexpensive and effective three-way catalyst technology. The change to stoichiometric combustion has led to increased tendency for engine knock due to higher in-cylinder temperatures. To suppress engine knock, Exhaust Gas Recirculation (EGR) rates from 10 to 30% are used. While high EGR rates nominally improve Brake Thermal Efficiency (BTE) and reduce exhaust gas temperatures, they also slow down combustion. However, by deploying a controlled spark triggered homogeneous charge volumetric ignition, very short burn durations can be achieved without the destructive effects of engine knocking towards high efficiency gas engines. In the interest of achieving 45% BTE in spark ignited an on-highway class 8 truck engines fueled on natural gas and to meet EURO 6 and future California emissions standards of 0.02 gm/kw-hr NOx, Controlled Auto-Ignition (CAI) is herein demonstrated on a 15 liter truck engine. CAI is enabled by (a) having a combustion device capable of exceptionally good combustion stability in the presence of high EGR rates (COV of IMEP < 0.75 %), (b) cylinder pressure based combustion feedback, and (c) fast closed loop combustion control (using a Woodward RT-CDC control system). This system enables significant reduction in burn duration by controlling a two phase combustion event. The first phase is normal spark ignited propagating flame, which then triggers the second phase which is volumetric auto-ignition. The location and percentage of fuel that burns in the volumetric auto-ignition event is controlled relative to that which occurs via the conventional spark ignited flame propagation process by use of high speed combustion in the loop feedback control. Auto-ignition mass fraction burned (MFB) ratios of 25–50% have been achieved yielding higher heat release rates at the end of combustion than at the center of combustion with the result being a shortening of the combustion burn duration from a nominal 20–30 degrees to a near optimal 10–15 degrees even with EGR rates as high as 25%. A novel and patent pending burn duration control strategy is employed to stably maintain this knock-free combustion strategy even with compression ratio as high as 14:1. The benefits are significant increase in Brake Thermal Efficiency and substantial reduction in engine out methane emissions without sacrifice of transient responsiveness.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A013, October 20–23, 2019
Paper No: ICEF2019-7266
Abstract
Abstract Spray combustion in compression ignition (CI) engines is a complex physical-chemical phenomenon. The differences in key fuel properties between gasoline range fuels and diesel, including the distillation temperature ranges and fuel reactivity, affect spray formation and combustion. To understand the impact of these fuel effects, this study aims at a thorough computational investigation involving variations in both the fuel physical and chemical properties. Physical properties include latent heat of vaporization, specific heat capacity, density, vapor pressure, viscosity, and surface tension. These properties were individually perturbed between gasoline and diesel. Chemical properties were represented by different fuel reactivity, including PRF0 and PRF60. The model was validated against diesel and RON60 gasoline spray experiments performed in a constant-volume combustion chamber. The physical and chemical properties were modeled separately to isolate the effect of a single parameter that is often difficult to single out in experimental investigations. Sprays under non-reacting and reacting conditions were then simulated to understand the physical processes that lead to ignition and thus the fuel reactivity effects on the subsequent processes. The investigation covered low to high temperature combustion and different exhaust gas recirculation (EGR) levels. Simulation results suggested that the chemical property dominated the ignition process, whereas the physical properties had more influence on the atomization and vaporization process. Also, there was a complex interaction between physical and chemical parameters on spray ignition depending on the operating conditions, which provide insights on tailoring fuel properties for different CI applications.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A005, October 20–23, 2019
Paper No: ICEF2019-7159
Abstract
Abstract Natural gas is known as a relatively clean fossil fuel due to its low carbon to hydrogen ratio compared to other transportation fuels, which yields a reduction of carbon monoxide, carbon dioxide, and unburned hydrocarbons emissions. However, it has a low cetane number, which makes it a difficult fuel for use in compression ignition engines. A potential solution for this issue can be adding small amounts of argon, as a noble gas with a low specific heat to modify the intake conditions. In this numerical study, a commercial compression ignition engine has been modeled to evaluate the auto-ignition of natural gas with the modified intake conditions. Different amounts of argon added to the intake air are examined in order to attain the optimal operating conditions. A detailed chemistry solver is implemented on a 53-species chemical kinetics mechanism to calculate the rate constants. The results show that compression ignition of natural gas can be achieved by adding small amounts of argon to the intake air. It drastically increases the in-cylinder temperature and pressure near TDC, which enables the auto-ignition of the injected natural gas. Moreover, it leads to the reduction in ignition delay and heat release rate, and expands the combustion duration. Emissions analysis indicates that NOx and CO 2 can be significantly diminished by increasing the amount of argon in the intake composition. This study introduces an efficient and clean compression ignition engine fueled with natural gas running in optimal operating conditions using argon addition to the intake.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T07A004, October 20–23, 2019
Paper No: ICEF2019-7144
Abstract
Abstract This study demonstrates the effects of technologies applied for the development of a gasoline direct injection (GDI) engine for improving the brake thermal efficiency (BTE) over 44%. The GDI engine for the current study is an in-line four-cylinder engine with a displacement of 2156cm 3 , which has relatively high stroke to bore ratio of 1.4 (110mm stroke and 79mm bore). All experiments have been conducted using a gasoline having RON 92 for stoichiometric operation at 2000RPM. First, since compression ratio is directly related to the thermal efficiency, four compression ratios (14.3, 15.2, 15.8 and 17.2) were explored for operation without exhaust gas recirculation (EGR). Then, for the same four compression ratios, EGR was used to suppress the knock occurrence at high loads with high compression ratio (CR), and its effect on initial and main combustion duration was compared. Second, the shape of intake port was revised to increase tumble flow of in-cylinder charge for reducing combustion duration at low and high load, and extending EGR-stability limit further eventually. Then, as an effective method to ensure stable, complete and fast combustion for EGR-diluted stoichiometric operation, the use of twin spark ignition system is examined by modifying both valve diameter of intake and exhaust, and its effect is compared against that of single spark ignition. In addition, the layout of twin spark ignition was also examined for the location of Front-Rear and Intake-Exhaust. To get the maximum BTE at high load, 12V electronic super charger (eSC) was applied. Under the condition of using 12V eSC, the effect of intake cam duration was identified by increasing from 260deg to 280deg. Finally, 48V eSC was applied with the longer intake camshaft duration of 280deg. As a result, the maximum BTE of 44% can be achieved for stoichiometric operation with EGR.
Proceedings Papers
Proc. ASME. ICEF2018, Volume 1: Large Bore Engines; Fuels; Advanced Combustion, V001T03A023, November 4–7, 2018
Paper No: ICEF2018-9701
Abstract
The Achates Power Inc. (API) Opposed Piston (OP) Engine architecture provides fundamental advantages that increase thermal efficiency over current poppet valve 4 stroke engines. In this paper, combustion performance of diesel and gasoline compression ignition (GCI) combustion in a medium duty, OP engine are shown. By using GCI, NO x and/or soot reductions can be seen compared to diesel combustion at similar or increased thermal efficiencies. The results also show that high combustion efficiency can be achieved with GCI combustion with acceptable noise and stability over the same load range as diesel combustion in an OP engine.
Proceedings Papers
Proc. ASME. ICEF2018, Volume 1: Large Bore Engines; Fuels; Advanced Combustion, V001T03A013, November 4–7, 2018
Paper No: ICEF2018-9618
Abstract
Natural gas is traditionally considered as a promising fuel in comparison to gasoline due to the potential of lower emissions and significant domestic reserves. These emissions can be further diminished by using noble gases, such as argon, instead of nitrogen as the working fluid in internal combustion engines. Furthermore, the use of argon as the working fluid can increase the thermodynamic efficiency due to its higher specific heat ratio. In comparison to pre-mixed operation, the direct injection of natural gas enables the engine to reach higher compression ratios while avoiding knock. Using argon as the working fluid increases the in-cylinder temperature at top dead center and enables the compression ignition of natural gas. In this numerical study, the combustion quality and ignition behavior of methane injected into a mixture of oxygen and argon has been investigated using a three-dimensional transient model of a constant volume combustion chamber. A dynamic structure large eddy simulation model has been utilized to capture the behavior of the non-premixed turbulent gaseous jet. A reduced mechanism consists of 22-species and 104-reactions were coupled with the CFD solver. The simulation results show that the methane jet ignites at engine-relevant conditions when nitrogen is replaced by argon as the working fluid. Ignition delay times are compared across a variety of operating conditions to show how mixing affects jet development and flame characteristics.
Proceedings Papers
Proc. ASME. ICEF2018, Volume 1: Large Bore Engines; Fuels; Advanced Combustion, V001T02A009, November 4–7, 2018
Paper No: ICEF2018-9729
Abstract
Supporting chemical kinetics model development with robust experimental results is the job of shock-tube, rapid compression machine, and other apparatus operators. A key limitation of many of these systems is difficulty with preparation of a fuel vapor-air mixture for heavy liquid fuels. Previous work has suggested that the Cetane Ignition Delay (CID) 510 system is capable of providing data useful for kinetics validation. Specifically, this constant-volume combustion chamber (1) can be characterized by a single bulk temperature, and (2) uses a high-pressure diesel injector to generate rapid fuel-air mixing and thus create a homogeneous mixture well before ignition. In this study, initial experiments found relatively good agreement between experiments and kinetic models for n -heptane and poor agreement for iso-octane under nominally the same ignition delay ranges for ambient conditions under which the mixture is determined to be effectively homogeneous. After excluding potential non-kinetic fuel properties as causes, further experiments highlight the high pressure sensitivity of the negative temperature coefficient (NTC) behavior. While this challenge is well known to kinetic mechanism developers, the data set included in this work ( n -heptane at 5 bar and iso-octane at 5–20 bar, each for various equivalence ratios) can be added to those used for validation. The results and system characterization presented demonstrate that this combustion system is capable of capturing kinetic effects decoupled from the spray process for these primary reference fuels. Future work can leverage this capability to provide kinetics validation data for most heavy, exotic, or otherwise difficult to test liquid fuels.