Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-20 of 773
Combustion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Vassilis Triantopoulos, Jason B. Martz, Jeff Sterniak, George Lavoie, Dennis N. Assanis, Stanislav V. Bohac
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A013, October 20–23, 2019
Paper No: ICEF2019-7220
Abstract
Abstract Spark-assisted compression ignition (SACI) is a low temperature combustion mode that can offer thermal efficiency improvements and lower nitrogen oxide emissions compared to conventional spark-ignited combustion. However, the SACI operating range is often limited due to excessive pressure rise rates driven by rapid heat release rates. Well-controlled experiments were performed to investigate the SACI operating limits under previously unexplored boosted, stoichiometric, EGR dilute conditions, where low temperature combustion engines promise high thermodynamic efficiencies. At higher intake boost, the SACI high load limit shifted towards lower fuel-to-charge equivalence ratio mixtures, creating a larger gap between the conventional spark-ignition EGR dilution limit and the boosted SACI operating limits. Combustion phasing retard was very effective at reducing maximum pressure rise rate levels until the stability limit, primarily due to slower end-gas burn rates. Gross fuel conversion efficiency improvements up to 10% were observed by using intake boost for either load expansion or dilution extension. Changes in engine speed necessitated changes in unburned gas temperature to match autoignition timing, but were shown to have negligible impact on the heat release profile on a crank angle basis. Lower engine speeds were favorable for load expansion, as time-based peak pressure rise rates scaled with engine speed.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A014, October 20–23, 2019
Paper No: ICEF2019-7274
Abstract
Abstract Reactivity controlled compression ignition (RCCI) is an emerging premix low temperature combustion philosophy. Contemporary understanding suggests that RCCI concept with a premix high octane (low reactivity) fuel and direct injected high cetane (high reactivity) fuel ensures in-cylinder stratification of equivalence ratio as well as fuel reactivity. This stratification of reactivity coupled with partial premixing ensures simultaneous reduction of oxides of nitrogen and smoke. Furthermore, the induced delay in combustion phasing and high compression ratio ensures diffusive flames away from piston surface resulting in higher thermal efficiency. In the present work, an experimental investigation was carried out using port injected gasoline and anhydrous ethanol as low reactivity pilot fuels and direct injected diesel as high reactivity main fuel under various energy share. A comparative study of both the pilot fuels were carried out in terms of engine performance, emission and in-cylinder behavior in both representative and statistical perspective.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A007, October 20–23, 2019
Paper No: ICEF2019-7170
Abstract
Abstract There is significant interest among researchers in finding economically sustainable alternatives to fossil-derived drop-in fuels and fuel additives. Fast pyrolysis, a method for converting biomass into liquid hydrocarbons with the potential for use as fuels or fuel additives, is a promising technology that can be two to three times less expensive at scale when compared to alternative approaches such as gasification and fermentation. However, many bio-oils directly derived from fast pyrolysis have a high oxygen content and high acidity, indicating poor performance in diesel engines when used as fuels or fuel additives. Thus, a combination of selective fast pyrolysis and chemical catalysis could produce tuned bioblendstocks that perform optimally in diesel engines. The variance in performance for derived compounds introduces a feedback loop in researching acceptable fuels and fuel additives, as various combustion properties for these compounds must be determined after pyrolysis and catalytic upgrading occurs. The present work aims to reduce this feedback loop by utilizing artificial neural networks trained with quantitative structure-property relationship values to preemptively screen pure component compounds that will be produced from fast pyrolysis and catalytic upgrading. The quantitative structure-property relationship values selected as inputs for models are discussed, the cetane number and sooting propensity of compounds derived from the catalytic upgrading of phenol are predicted, and the viability of these compounds as fuels and fuel additives is analyzed. The model constructed to predict cetane number has a test set prediction root-mean-squared error of 9.874 cetane units, and the model constructed to predict yield sooting index has a test set prediction root-mean-squared error of 13.478 yield sooting index units (on the unified scale).
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A006, October 20–23, 2019
Paper No: ICEF2019-7164
Abstract
Abstract Using a split injection of wet ethanol, where a portion of the fuel is injected during the compression stroke, has been shown to be an effective way to enable thermally stratified compression ignition (TSCI), an advanced, low temperature combustion (LTC) mode that aims to control the heat release process by enhancing thermal stratification, thereby extending the load range of LTC. Wet ethanol is the ideal fuel candidate to enable TSCI because it has a high latent heat of vaporization and low equivalence ratio sensitivity. Previous work has shown “early” compression stroke injections (−150 to −100 deg aTDC) have the potential to control the start of combustion while “mid” compression stroke injections (−90 to −30 deg aTDC) have the potential to control in-cylinder thermal stratification, thereby controlling the heat release rate. In this work, a mixture of 80% ethanol and 20% water by mass is used to further study the injection strategy of TSCI combustion. Additionally, the impact of external, cooled exhaust gas recirculation (EGR) and intake boost level on the effectiveness of a split injection of wet ethanol to control the heat release process are investigated. It was found that neither external, cooled EGR, nor intake boost level has any impact on the effectiveness of the compression stroke injection(s) at controlling the burn rate of TSCI. It was also seen that external, cooled EGR has the potential to increase the overall tailpipe combustion efficiency, while intake boost has the potential to decrease NO x emissions at the expense of combustion efficiency by lowering the global equivalence ratio.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T05A004, October 20–23, 2019
Paper No: ICEF2019-7178
Abstract
Abstract Demanding legislation on exhaust emissions and fuel consumption has led great attention to on board control algorithms able to optimize the combustion process in terms of efficiency and pollutants emissions production. Dealing with turbocharged engines, the thermo and fluid dynamic conditions of the exhaust gas are responsible for the turbine rotation; its speed has demonstrated to be related to the combustion process and can be used for the combustion monitoring. This work presents a methodology in which the instantaneous turbocharger speed is obtained by the processing of the signal from an accelerometer mounted on the compressor housing. Experimental tests have been carried out on a small water-cooled, two cylinder, common rail diesel engine installed in the Laboratory of the Engineering Department at ‘ROMA TRE’ University. The methodology has been applied to the signals acquired during steady state and transient tests. The comparison between the estimations provided by the accelerometer and the values obtained by direct measurements highlighted the accuracy of the predictions thus demonstrating the suitability of the accelerometer to be used as feedback signal in algorithms for the engine management in order to maintain the combustion effectiveness in spite of aging and degradation of components, variations of fuel properties.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A014, October 20–23, 2019
Paper No: ICEF2019-7221
Abstract
Abstract Future diesel engine legislations are focused on further improvements in green-house gas emissions, such as carbon dioxide while additionally pushing for lower NOx emissions levels. These are being achieved with a combination of base-engine, fuel-injection system, air-system and after-treatment system improvements. In this paper, the effect of one injection system characteristics, namely injector flow-rate was investigated on engine performance and emissions using both numerical and experimental techniques. The phenomenon of increasing injector flow was first numerically investigated using commercial code Converge. Two approaches to increasing injector flow-rate were investigated. The first approach was by increasing the injector nozzle hole size while keeping the number of holes constant. The second approach was to change the number of the holes while keeping the injector nozzle size fixed. These simulations led to procurement of injectors to validate the simulation trends. Engine tests were performed with Navistar’s 12.4 L multi-cylinder heavy-duty diesel engine. The identified nozzle flow rates included a 66% increase from that of the baseline case. All the engine tests were performed at the typical cruising condition for this engine, at a series of injection timing and injection pressure values. It was observed that the crank angle for 50% of the integrated total calculated heat release (CA50) for the fuel burned was the most important factor that influenced the brake-thermal efficiency (BTE) and different injectors had similar BTE at constant CA50. With regards to emission, at higher nozzle flow rates, the combustion showed a slightly higher propensity for soot and increased levels of carbon monoxide.
Proceedings Papers
Joohan Kim, Riccardo Scarcelli, Sibendu Som, Ashish Shah, Munidhar S. Biruduganti, Douglas E. Longman
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T06A012, October 20–23, 2019
Paper No: ICEF2019-7278
Abstract
Abstract Lean combustion in an internal combustion engine is a promising strategy to increase thermal efficiency by leveraging a more favorable specific heat ratio of the fresh mixture and simultaneously suppressing the heat losses to the cylinder wall. However, unstable ignition events and slow flame propagation at fuel-lean condition lead to high cycle-to-cycle variability and hence limit the high-efficiency engine operating range. Pre-chamber ignition is considered an effective concept to extend the lean operating limit, by providing spatially distributed ignition with multiple turbulent flame-jets and enabling faster combustion rate compared to the conventional spark ignition approach. From a numerical modeling perspective, to date, still the science base and available simulation tools are inadequate for understanding and predicting the combustion processes in pre-chamber ignited engines. In this paper, conceptually different RANS combustion models widely adopted in the engine modeling community were used to simulate the ignition and combustion processes in a medium-duty natural gas engine with a pre-chamber spark-ignition system. A flamelet-based turbulent combustion model, i.e., G-equation, and a multi-zone well-stirred reactor model were employed for the multi-dimensional study. Simulation results were compared with experimental data in terms of in-cylinder pressure and heat release rate. Finally, the analysis of the performance of the two models is carried out to highlight the strengths and limitations of the two formulations respectively.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T06A005, October 20–23, 2019
Paper No: ICEF2019-7189
Abstract
Abstract With energy shortages and increasing environmental problems, natural gas, as a clean energy, has the advantages of cheap price and large reserves and has become one of the main alternative fuels for marine diesel engines. For large bore natural gas engines, pre-chamber spark plug ignition can be used to increase engine efficiency. The engine mainly relies on the flame ejected from the pre-chamber to ignite the mixture of natural gas and air in the main combustion chamber. The ignition flame in the main combustion chamber is the main factor affecting the combustion process. Although the pre-chamber natural gas engines have been extensively studied, the characteristics of combustion in the pre-chamber and the development of ignition flame in the main combustion chamber have not been fully understood. In this study, a two-zone phenomenological combustion model of pre-chamber spark-ignition natural gas engines is established based on the exchange of mass and energy of the gas flow process in the pre-chamber and the main combustion chamber. The basic characteristics of the developed model are: a spherical flame surface is used to describe the combustion state in the pre-chamber, and according to the turbulent jet theory, the influence of turbulence on the state of the pilot flame is considered based on the Reynolds number. According to the phenomenological model, the time when the flame starts to be injected from the pre-chamber to the main combustion chamber, and the parameters such as the length of the pilot flame are analyzed. The model was verified by experimental data, and the results showed that the calculated values were in good agreement with the experimental values. It provides an effective tool for mastering the law of flame development and supporting the optimization of combustion efficiency.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A007, October 20–23, 2019
Paper No: ICEF2019-7184
Abstract
Abstract Natural gas (NG) is an alternative combustible fuel for the transportation sectors due to its clean combustion, small carbon footprint, and, with recent breakthroughs in drilling technologies, increased availability and low cost. Currently, NG is better suited for spark-ignited (SI), as a gasoline replacement in conventional SI engines or as a diesel replacement in diesel engines converted to SI operation. However, the knowledge on the fundamentals of NG flame propagation at conditions representative of modern engines (e.g., at higher compression ratios and/or lean mixtures) is limited. Flame propagation inside an engine can be achieved by replacing the original piston with a see-through one. This study visualized flame activities inside the combustion chamber of an optically-accessible heavy-duty diesel engine retrofitted to NG SI operation to increase the understanding of combustion processes inside such converted engines. Recordings of flame luminosity throughout the combustion period at lean-burn operating conditions indicated that the fully-developed turbulent flame formed from several smaller-scale kernels. These small kernels varied with shapes and locations due to different flow motion around the spark location (including the effect of spark electrodes on the local flow separation), different local temperature, or different energy released in these regions. In addition, the turbulent flame was heavily wrinkled during propagation, despite it was grown from a relatively-circular kernel. Moreover, the intake swirl accelerated the flame propagation process while rotating the turbulent flame during its development. Furthermore, the flame propagation speed reduced dramatically when entering the squish region, while the direction from which the flame first touched the bowl edge changed with individual cycles. The results can help the CFD community to better develop RANS and/or LES simulations of such engines under lean-burn operating conditions.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A008, October 20–23, 2019
Paper No: ICEF2019-7181
Abstract
Abstract The conversion of existing diesel engines to spark ignition (SI) operation by adding a low-pressure injector in the intake manifold for fuel delivery and replacing the original high-pressure fuel injector with a spark plug to initiate and control the combustion process can reduce U.S. dependence on petroleum imports and increase natural gas (NG) applications in heavy-duty transportation sectors. Since the conventional diesel combustion chamber (i.e., flat-head-and-bowl-in-piston-chamber) creates high turbulence, the converted NG SI engine can operate leaner with stable and repeatable combustion process. However, existing literatures point to a long late-combustion duration and increased unburned hydrocarbon emissions in such retrofitted engines that maintained the original combustion chamber. Consequently, the main objective of this paper was to report recent findings of NG combustion characteristics inside a bowl-in-piston combustion chamber that will add to the general understanding of the phenomena. The new results indicated that the premixed NG burn inside the bowl-in-piston combustion chamber will separate into a bowl-burn and a squish-burn processes in terms of burning location and timing. The slow burning event in the squish region explains the low slope of the burn rate towards the end of combustion in existing studies (hence the longer late-combustion period). In addition, the less-favorable conditions for the combustion in the squish region explained the increased carbon monoxide and unburned hydrocarbon emissions.
Proceedings Papers
Sascha Andree, Dmitry Goryntsev, Martin Theile, Björn Henke, Karsten Schleef, Jürgen Nocke, Ferry Tap, Bert Buchholz, Egon Hassel
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T01A002, October 20–23, 2019
Paper No: ICEF2019-7148
Abstract
Abstract The simulation of a diesel natural gas dual fuel combustion process is the topic of this paper. Based on a detailed chemical reaction mechanism, which was applied for such a dual fuel combustion, the complete internal combustion engine process was simulated. Two single fuel combustion reaction mechanisms from literature were merged, to consider the simultaneous reaction paths of diesel and natural gas. N-heptane was chosen as a surrogate for diesel. The chemical reaction mechanisms are solved by applying a tabulation method using the software tool AVL Tabkin™. In combination with a Flamelet Generated Manifold (FGM) combustion model, this leads to a reduction of computational effort compared to a direct solving of the reaction mechanism, because of a decoupling of chemistry and flow calculations. Turbulence was modelled using an unsteady Reynolds-Averaged Navier Stokes (URANS) model. In comparison to conventional combustion models, this approach allows for detailed investigations of the complex ignition process of the dual fuel combustion process. The unexpected inversely proportional relationship between start of injection (SOI) and start of combustion (SOC), a later start of injection makes for an earlier combustion of the main load, is only one of these interesting combustion phenomena, which can now be analyzed in detail. Further investigations are done for different engine load points and multiple pilot injection strategies. The simulation results are confirmed by experimental measurements at a medium speed dual fuel single cylinder research engine.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T05A005, October 20–23, 2019
Paper No: ICEF2019-7179
Abstract
Abstract The control of combustion is a key topic for diesel engine development in terms of performance and pollutant emissions. The combustion process is piloted through the proper injection strategy, which depends on the features of the injection system. Mechanical-hydraulic models of high-pressure injection systems often support the accurate tuning of the injection strategy. The higher is the accuracy in the modeling of the electro-injector behavior, the deeper is the role of the simulation. Under such a viewpoint, the validation of the models is undoubtedly fundamental. One of the most crucial information characterizing the injector relies on the measurement of the needle displacement. Needle displacement affects rate, timing and quantity of injected fuel; it also influences the flow features within the nozzle, which are then reflected by the primary atomization process. Needle is considered hardly-accessible due to the injector architecture itself, making difficult the measurement of displacement. Nevertheless, the problem has been handled in different ways and three measurement techniques have been proposed. On one side, there is the measurement based on eddy-current transducers; on the other side, there are two alternative procedures, based on the use of optical sensors. However, in all cases, the needle is traced indirectly, since the position of the control plunger of the needle is observed. The current contribution presents a novel experimental technique for the measurement of needle displacement. The method is based on the direct visualization of the needle, allowing for the detailed definition of its law of motion through digital imaging, when the injector is characterized on a test-rig under transient conditions. The paper describes the details of the diagnostic scheme, the experimental facility and the digital imaging set-up. The main features and the capabilities of the method are discussed, in comparison with the other available techniques.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T06A006, October 20–23, 2019
Paper No: ICEF2019-7237
Abstract
Abstract In this work, a novel design optimization technique based on active learning, which involves dynamic exploration and exploitation of the design space of interest using an ensemble of machine learning algorithms, is presented. In this approach, a hybrid methodology incorporating an explorative weak learner (regularized basis function model) which fits high-level information about the response surface, and an exploitative strong learner (based on committee machine) that fits finer details around promising regions identified by the weak learner, is employed. For each design iteration, an aristocratic approach is used to select a set of nominees, where points that meet a threshold merit value as predicted by the weak learner are selected to be evaluated using expensive function evaluation. In addition to these points, the global optimum as predicted by the strong learner is also evaluated to enable rapid convergence to the actual global optimum once the most promising region has been identified by the optimizer. This methodology is first tested by applying it to the optimization of a two-dimensional multi-modal surface. The performance of the new active learning approach is compared with traditional global optimization methods, namely micro-genetic algorithm (μGA) and particle swarm optimization (PSO). It is demonstrated that the new optimizer is able to reach the global optimum much faster, with a significantly fewer number of function evaluations. Subsequently, the new optimizer is also applied to a complex internal combustion (IC) engine combustion optimization case with nine control parameters related to fuel injection, initial thermodynamic conditions, and in-cylinder flow. It is again found that the new approach significantly lowers the number of function evaluations that are needed to reach the optimum design configuration (by up to 80%) when compared to particle swarm and genetic algorithm-based optimization techniques.
Proceedings Papers
Sayop Kim, Joohan Kim, Ashish Shah, Pinaki Pal, Riccardo Scarcelli, Toby Rockstroh, Sibendu Som, Yunchao Wu, Tianfeng Lu
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T06A013, October 20–23, 2019
Paper No: ICEF2019-7281
Abstract
Abstract Multi-mode combustion strategies may provide a considerable thermal efficiency improvement targeted at part-load operating conditions for light-duty spark-ignition (SI) engines. The extension from boosted SI mode at high loads to advanced compression ignition (ACI) mode at low loads can be achieved by increasing compression ratio and utilizing intake air heating. In order to enable an accurate control of intake charge condition for ACI control and rapid mode-switches, it is essential to gain fundamental insight into the autoignition process with regard to thermal and fuel-air mixture stratification in the combustion chamber. In this work, a computational fluid dynamics (CFD) study is carried out to reveal some degrees of correlation between the mixture and thermal stratifications induced by the cylinder wall temperature and combustion-phasing across varying engine load conditions. The computational analysis begins with a calibrated simulation setup best matching the engine experiments, and subsequently evaluates the baseline setup for an extended range of engine load conditions for two excess-air ratio cases. The present study emphasizes the dominance of thermal stratifications for autoignition process due to wall temperature effects depending on the engine load conditions of interest. In addition, this study also aims to provide insight into the impact of mixture stratification on cyclic variability, especially at colder wall engine conditions (e.g., cold start). Observations herein provide highlight of the propensity of autoignition in correlation with mixture reactivity space.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A008, October 20–23, 2019
Paper No: ICEF2019-7197
Abstract
Abstract Dual fuel diesel-methane low temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual fuel LTC typically exhibit poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting the methane combustion once the process is initiated by the first one. In this work, diesel-methane dual fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas surrogate). A multidimensional model is first validated in comparison with experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 CAD and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion emissions are investigated, again showing good agreement with experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline. Furthermore, it is shown that post-injection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T03A001, October 20–23, 2019
Paper No: ICEF2019-7130
Abstract
Abstract This experimental study focuses on the effects of the reactivity separation between the port injected fuel and the direct injection fuel, the amount of external-cooled exhaust gas recirculation (EGR), and the direct injection timing of the high reactivity fuel on Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted on a light-duty, single-cylinder diesel engine with a production GM/Isuzu engine head and piston and a retrofitted port fuel injection system. The global charge-mass equivalence ratio, ϕ′, was fixed at 0.32 throughout all of the experiments. To investigate the effects of the fuel reactivity separation, different Primary Reference Fuels (PRF) were port injected, with the PRF number varying from 50 to 90. To investigate the effects of EGR, an EGR range of 0 to 55% was used. To investigate the effects of the injection timing, an injection timing window of −65 to −45 degrees ATDC was chosen. The results indicate that there are several tradeoffs. First, decreasing the port injected fuel reactivity (increasing the PRF number) delays combustion phasing, decreases the combustion efficiency by up to 9%, increases the gross indicated thermal efficiency up to 22%, enhances the combustion sensitivity to the direct injection timing, and slightly increases the UHC, CO, and NOx emissions. Second, increasing the EGR percentage delays combustion phasing, lowers the peak heat release rate, and lowers the NOx emissions. The combustion efficiency first increases and then decreases with EGR percentage for high reactivity fuels (low PRF number), but only decreases for low reactivity fuels. Finally, delaying the injection timing advances combustion phasing and increases the combustion efficiency, but decreases the gross indicated thermal efficiency and increases the NOx emissions. Across all of the experiments, delays in CA50 increase the gross indicated thermal efficiency and decrease the combustion efficiency, which represents an inherent tradeoff for RCCI combustion on a light-duty engine.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T01A003, October 20–23, 2019
Paper No: ICEF2019-7193
Abstract
Abstract The increased production of natural gas harvested from unconventional sources, such as shale, has led to fluctuations in the species composition of natural gas moving through pipelines. These variations alter the chemical properties of the bulk gas mixture and, consequently, affect the operation of pipeline compressor engines which use the gas as fuel. Among several possible ramifications of these variations is that of unacceptably high engine-out NO x emissions. Therefore, engine controller enhancements which can account for fuel variability are necessary for maintaining emissions compliance. Having the means to predict NO x emissions from a field engine can inform the development of such control schemes. There are several types of compressor engines; however, this study considers a large bore, lean-burn, two-stroke, integral compressor engine. This class of engine has unique operating conditions which make the formation of engine-out NO x different from typical automotive spark-ignited engines. For this reason, automotive-based methods for predicting NO x emissions are not sufficiently accurate. In this study, an investigation is performed on the possible NO and NO 2 formation pathways which could be contributing to exhaust emissions. Additionally, a modeling method is proposed to predict engine-out NO x emissions using a 0-D/1-D model of a Cooper-Bessemer GMWH-10C compressor engine. Predictions are achieved with GRI-Mech3.0, a natural gas combustion mechanism, which allows for simulated formation of NO x species. The implemented technique is tuned using experimental data from a field engine to better predict emissions over a range of engine operating conditions. Tuning the model led to acceptable agreement across operating points varying in both load and trapped equivalence ratio.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T02A009, October 20–23, 2019
Paper No: ICEF2019-7182
Abstract
Abstract Existing compression ignition engines can be modified to spark ignition configuration to increase the use of natural gas in the heavy-duty transportation sector. A better understanding of the premixed natural gas combustion inside the original diesel chamber (i.e., flat-head-and-bowl-in-piston) will help improve the conversion process and therefore accelerate the diesel engine conversion. Previous studies indicated that the burning process in such engines is a two-stage combustion with a fast burning inside the bowl and a slower burning inside the squish. This paper used experimental and numerical results to investigate the combustion process at a more advanced spark timing representative of ultra-lean medium-load operation, which placed most of the combustion inside the compression stroke. At such operating conditions, the high turbulence intensity inside the squish region accelerated the flame propagation inside the squish region to the point that the burn inside the bowl separated less from that inside the squish region. However, several individual cycles produced a double-peak energy-release with the peak locations closer to the only one heat release peak seen in the average cycle. Moreover, RANS CFD simulations indicated that the time at which the flame entered the squish region was near the peak location of the energy-release process for the conditions investigated here. As a result, the data suggests that the double-peak seen in the apparent heat release rate was the result of the cycle-by-cycle variation in the flame propagation.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T05A006, October 20–23, 2019
Paper No: ICEF2019-7199
Abstract
Abstract Future emission regulations for Internal Combustion Engines require increasingly stringent reductions of engine-out emissions, especially NOx and particulate matter, together with the continuous improvement of engine efficiency. In the current scenario, even though compression-ignited engines are still considered the most efficient and reliable technology for automotive applications, the use of Diesel-like fuels has become a critical issue, since it is usually not compatible with the required emissions reduction. A large amount of research and experimentation is being carried out to investigate the combined use of compression-ignited engines and gasoline-like fuels, which proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. This work investigates the combustion process occurring in a light-duty compression-ignited engine while directly injecting only gasoline. A specific experimental setup has been designed to guarantee combustion stability over the whole operating range, that is achieved controlling boost pressure and temperature together with all the injection parameters of the multi-jet pattern. The analysis of the experimental data clearly highlights how the variation of the control parameters affect the ignition process of small amounts of directly injected gasoline and the maximum achievable efficiency. In particular, the analysis of the sensitivity to the injection parameters allows identifying an ignition delay model and the key control parameters that might be varied to guarantee a robust control of combustion phasing within the cycle.
Proceedings Papers
Proc. ASME. ICEF2019, ASME 2019 Internal Combustion Engine Division Fall Technical Conference, V001T07A001, October 20–23, 2019
Paper No: ICEF2019-7111
Abstract
Abstract Lube oil emission is thought to have a negative influence on hydrocarbon and particle emissions, autoignition and the life-cycle cost of internal combustion engines. Thus, one of the major goals of combustion engine research and development is to optimize lube oil consumption, for example by optimizing the tribological behavior of the piston group (interaction between piston rings and cylinder liner). This requires the application of a fast and accurate lube oil consumption measurement method. Methods such as gravimetric and volumetric measurement are outdated for R&D applications because of measurement time, absolute accuracy as well as repeatability, however some OEMs are still applying this method. At present, the use of tracer methods for measuring lube oil consumption is considered the most promising in terms of decreasing measurement time and increasing accuracy. For example, sulfur as a tracer is one of the most established methods for measuring lube oil consumption, but previous publications have revealed downsides and future challenges of its use. This publication, however, highlights the challenges of using the stable hydrogen isotope deuterium as a tracer which are still to overcome, in order to become a viable and reliable method for measuring lube oil consumption on internal combustion engines. In the introduction, a novel concept of measuring lube oil consumption with deuterated engine oil and the test bench setup are explained. Following laboratory experiments, test bench runs on a heavy-duty diesel engine and long-term studies on a field engine, three major challenges facing the new approach are identified and potential solutions are proposed. First, the long-term stability of the tracer in the lube oil and potential changes in the physical and chemical properties of the oil due to deuteration are discussed in light of the results of tests on a field engine that uses deuterated engine oil. Second, the hydrogen-deuterium exchange process to mark the oil with the tracer is examined and potential approaches for reducing cost and duration are highlighted. The universal applicability of the deuteration process to several base oil groups is also explained. Finally, the detection of deuterium in the gas of the engine exhaust and potential cross-sensitivities to trace gases as well as other crucial limitations of the detector in analyzing engine exhaust are addressed. The summary presents the requirements for converting the experiments with a deuterium tracer into a reliable method for lube oil consumption measurement providing crucial properties such as high accuracy, short measurement time, effort and ease of use.