Gasoline compression ignition (GCI) engines are considered an attractive alternative to traditional spark-ignition and diesel engines. In this work, a Machine Learning-Grid Gradient Algorithm (ML-GGA) approach was developed to optimize the performance of internal combustion engines. Machine learning (ML) offers a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. The developed ML-GGA model was compared with a recently developed Machine learning Genetic Algorithm (ML-GA). Detailed investigations of optimization solver parameters and variables limits extension were performed in the present ML-GGA model to improve the accuracy and robustness of the optimization process. Detailed descriptions of the different procedures, optimization tools and criteria that must be followed for a successful output are provided here. The developed ML-GGA approach was used to optimize the operating conditions (case 1) and the piston bowl design (case 2) of a heavy-duty diesel engine running on a gasoline fuel with a Research Octane Number (RON) of 80. The ML-GGA approach yielded > 2% improvements in the merit function, compared to the optimum obtained from a thorough computational fluid dynamics (CFD) guided system optimization. The predictions from the ML-GGA approach were validated with engine CFD simulations. This study demonstrates the potential of ML-GGA to significantly reduce the time needed for optimization problems, without loss in accuracy compared to traditional approaches.

This content is only available via PDF.
You do not currently have access to this content.