Abstract
Alternative fuels are of interest to automakers and regulators due to their potential to reduce net greenhouse gas emissions from transportation sources. Alternative fuels also have fuel properties which may enable advanced combustion modes with higher engine thermal efficiencies. There has been previous work to identify the relationship between various fuel properties and engine performance, but most of this work has been experiments or simulations where the change in properties was obtained through changing the fuel composition, making isolating the effects of individual fuel properties difficult. In this study, numerical simulations have been used to investigate the effects of individual fuel physical properties such as viscosity or heat of vaporization (HoV) on engine performance.
Simulations have been performed of two different engine platforms, the first an optical, single-cylinder research engine and the second a multi-cylinder production engine. Both engines are direct-injection spark-ignition engines with pent-roof heads and are designed for automotive applications. Each engine was run at a different operating condition, one stable and one knock-limited. Different base fuels provided a variety of simulated conditions. Up to six different fuel properties were varied as part of Global Sensitivity Analyses performed for each of the engines with multiple performance targets including thermal efficiency, combustion efficiency and combustion phasing.
Results show trends that are largely consistent with previous experimental findings using multiple fuels. The engine thermal efficiency was primarily sensitive to the fuel’s HoV, with other fuel physical properties having smaller effects. For optical engine results, the magnitude of the effect was greater in this study than expected based on previous experimental results were many fuel physical and chemical properties were varied simultaneously. However, for the multi-cylinder production engine, the relationship between thermal efficiency and HoV was slightly smaller.