In the late 1980’s Enterprise Engine Company performed a single cylinder test of micro-pilot high pressure direct injection as a retrofit technology for conventional dual fuel engines. While that testing demonstrated a number of benefits for this technology, non-technical considerations led to the use of low pressure Pre-Combustion Chamber (PCC) micro-pilot technology as the retrofit technology instead. Thirty years later, when the automotive components of the PCC micro-pilot system were no longer available, the opportunity again arose to test the capabilities of an off the shelf high pressure direct injection micro-pilot system as a retrofit technology for a conventional dual fuel engine.

Single cylinder and full engine testing of the high pressure direct injection micro-pilot injection confirmed the results of the 1980’s testing. The test results also corroborated modern analytical and experimental testing of high pressure pilot technology. In particular, the interaction between the diesel pilot and primary fuel gas charge is very complex and sometimes counterintuitive. Likewise performance optimization requires careful balance of injection timing, injection quantity and fuel gas air/fuel ratio. Even then, exhaust gas methane emissions remain counterintuitive.

This paper reviews modern single cylinder and full engine test results focusing on optimization parameters for high pressure direct injection micro-pilot for retrofit and new engine applications.

This content is only available via PDF.
You do not currently have access to this content.