In the present paper, a comprehensive ignition system model (VTF ignition model) accounting for the practical module and working mechanism of a spark plug was developed, aiming to provide enhanced capability for the 3D combustion simulation of spark ignition engines. In this model, an electrical circuitry model is used to represent the ignition coil, spark plug, and air column. The air column is represented by a set of Lagrangian particles that move with the local flow field. Flame propagation is directly calculated using SAGE model with a reduced isooctane reaction mechanism. The new ignition system model is further implemented into CONVERGE through user defined functions and is verified by comparing with the conventional DPIK model. It is found that the VTF ignition model predicts slower combustion than the DPIK model, mainly due to more realistic energy deposit method and energy discharging rate. Furthermore, the VTF model also has the capability of predicting the arc motion and restrike phenomena associated with spark ignition processes. It is expected that with more validation with experiments, the new VTF model has the great potential to better serve the needs of engine combustion simulation.

This content is only available via PDF.
You do not currently have access to this content.