In the present paper, a comprehensive ignition system model (VTF ignition model) accounting for the practical module and working mechanism of a spark plug was developed, aiming to provide enhanced capability for the 3D combustion simulation of spark ignition engines. In this model, an electrical circuitry model is used to represent the ignition coil, spark plug, and air column. The air column is represented by a set of Lagrangian particles that move with the local flow field. Flame propagation is directly calculated using SAGE model with a reduced isooctane reaction mechanism. The new ignition system model is further implemented into CONVERGE through user defined functions and is verified by comparing with the conventional DPIK model. It is found that the VTF ignition model predicts slower combustion than the DPIK model, mainly due to more realistic energy deposit method and energy discharging rate. Furthermore, the VTF model also has the capability of predicting the arc motion and restrike phenomena associated with spark ignition processes. It is expected that with more validation with experiments, the new VTF model has the great potential to better serve the needs of engine combustion simulation.
Skip Nav Destination
ASME 2018 Internal Combustion Engine Division Fall Technical Conference
November 4–7, 2018
San Diego, California, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5199-9
PROCEEDINGS PAPER
A Comprehensive Ignition System Model for Spark Ignition Engines
Haiwen Ge
Texas Tech University, Lubbock, TX
Peng Zhao
Oakland University, Rochester, MI
Paper No:
ICEF2018-9574, V002T06A007; 8 pages
Published Online:
January 3, 2019
Citation
Ge, H, & Zhao, P. "A Comprehensive Ignition System Model for Spark Ignition Engines." Proceedings of the ASME 2018 Internal Combustion Engine Division Fall Technical Conference. Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development. San Diego, California, USA. November 4–7, 2018. V002T06A007. ASME. https://doi.org/10.1115/ICEF2018-9574
Download citation file:
57
Views
Related Proceedings Papers
Related Articles
Numerical Investigation of the Effect of Knock on Heat Transfer in a Turbocharged Spark Ignition Engine
J. Eng. Gas Turbines Power (December,2015)
Extending Lean and Exhaust Gas Recirculation-Dilute Operating Limits of a Modern Gasoline Direct-Injection Engine Using a Low-Energy Transient Plasma Ignition System
J. Eng. Gas Turbines Power (November,2016)
Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion
J. Eng. Gas Turbines Power (September,2008)
Related Chapters
Pipeline Integrity and Security
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Conclusions
Clean and Efficient Coal-Fired Power Plants: Development Toward Advanced Technologies