Reliably starting the engine during extremely cold ambient temperatures is one of the largest calibration and emissions challenges in engine development. Although cold-start conditions comprise only a small portion of an engine’s typical drive cycle, large amounts of hydrocarbon and particulate emissions are generated during this time, and the calibration of cold-start operation takes several months to complete.

During the cold start period, results of previous cycle combustion event strongly influences the subsequent cycle due to variations in engine speed, residual fraction, residual wall film mass, in-cylinder charge and wall temperatures, and air flow distribution between cylinders. Include all these parameters in CFD simulation is critical in understanding the cold start process in transient and cumulative manner.

Measured cold start data of a production four cylinder spark-ignition direct-injection engine was collected for this study with an ambient temperature of −30 °C. Three-dimensional transient engine flow, spray and combustion simulation over first 3 consecutive engine cycles is carried out to provide a better understandings of the cold-start process. Measured engine speed and 1D conjugate heat transfer model are used to capture realistic in-cylinder flow dynamics and transient wall temperatures for more accurate fuel-air mixing predictions.

The CFD predicted cumulative heat release trend for the first 3 cycles matches the data from measured pressure analysis. The same observation can be made for the vaporized fuel mass as well. These observations are explained in the report.

This content is only available via PDF.
You do not currently have access to this content.