Many studies have shown that gasoline compression ignition (GCI) can replace conventional diesel combustion (CDC) by achieving high efficiency and low smoke and toxic gaseous emissions simultaneously. This is due to the low cetane number of gasoline that results in long ignition delay, allowing very advanced injection timing. This gives even longer time for fuel-air mixing, thus resulting in locally lean combustion that produces low particulate matter (PM). However, GCI operation faces challenges at high engine load condition. At high load conditions, large amounts of fuel injected early for premixed combustion can lead to high combustion noise from premixed combustion. Meanwhile, more fuel late injected late leads to poor mixing, hence higher smoke. Multiple injections can offer the flexibility in controlling the in-cylinder fuel stratification level. In this study, moderate to high engine loads of 8 to 14 bar BMEP were accomplished by utilizing an optimal multiple injection scheme. Injection timing of pilot, main, and post injections was investigated individually for its effect on the emission and engine performance. A moderate level of exhaust gas recirculating (EGR) was used to achieve low temperature combustion (LTC) condition. While higher EGR reduced NOx significantly due to lower combustion temperature, it affected the maximum boost that could be acquired by the turbocharger due to the reduction in exhaust enthalpy. During the engine load/speed sweep, calculations of combustion, thermodynamics, gas exchange, and mechanical efficiencies were analyzed to identify factor that needs to be improved for GCI operation. This study also demonstrates the importance of injection strategy including high injection pressure to attain high load points with low smoke and low noise.
Skip Nav Destination
ASME 2017 Internal Combustion Engine Division Fall Technical Conference
October 15–18, 2017
Seattle, Washington, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5831-8
PROCEEDINGS PAPER
A Study of Injection Strategy to Achieve High Load Points for Gasoline Compression Ignition (GCI) Operation
Khanh Cung,
Khanh Cung
Argonne National Laboratory, Argonne, IL
Search for other works by this author on:
Stephen Ciatti
Stephen Ciatti
Argonne National Laboratory, Argonne, IL
Search for other works by this author on:
Khanh Cung
Argonne National Laboratory, Argonne, IL
Stephen Ciatti
Argonne National Laboratory, Argonne, IL
Paper No:
ICEF2017-3625, V001T03A014; 14 pages
Published Online:
November 30, 2017
Citation
Cung, K, & Ciatti, S. "A Study of Injection Strategy to Achieve High Load Points for Gasoline Compression Ignition (GCI) Operation." Proceedings of the ASME 2017 Internal Combustion Engine Division Fall Technical Conference. Volume 1: Large Bore Engines; Fuels; Advanced Combustion. Seattle, Washington, USA. October 15–18, 2017. V001T03A014. ASME. https://doi.org/10.1115/ICEF2017-3625
Download citation file:
77
Views
Related Proceedings Papers
Related Articles
Numerical Investigation on Energetic, Combustion, and Emissions Parameters of a Diesel Engine Fueled With Diesel/Butanol and Diesel/Pentanol
J. Thermal Sci. Eng. Appl (August,2024)
Low NO x and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels
J. Eng. Gas Turbines Power (September,2010)
Numerical and Experimental Study on the Impact of Mild Cold Exhaust Gas Recirculation on Exhaust Emissions in a Biodiesel-Fueled Diesel Engine
J. Eng. Gas Turbines Power (November,2021)
Related Chapters
Later Single-Cylinder Engines
Air Engines: The History, Science, and Reality of the Perfect Engine
Alternative Systems
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration