Natural gas/diesel dual fuel engines used in oil and gas drilling operations must be able to meet NOx emissions limits across a wide range of substitution percentage, which affects the air to natural gas ratio or gas lambda. In a dual fuel engine operating at high substitution, premixed, propagating natural gas flames occur and the NOx formed in such premixed flames is known to be a strong function of gas lambda. Consequently there is interest in understanding how NOx formation in a dual fuel engine is affected by gas lambda. However, NOx formation in a dual fuel engine is complicated by the interaction with the non-premixed diesel jet flame. As a result, previous studies have shown that enriching the air-fuel ratio can either increase or decrease NOx emissions depending on the operating conditions investigated. This study presents multi-dimensional combustion simulations of an air-fuel ratio sweep from gas lambda 2.0 to 1.5 at 80% substitution, which exhibited a minimum in NOx emissions at a natural gas lambda of 1.75. Images from the simulations are used to provide detailed explanations of the physical processes responsible for the minimum NOx trend with natural gas lambda.

This content is only available via PDF.
You do not currently have access to this content.