Increasingly stringent fuel economy and CO2 emission regulations provide a strong impetus for development of high efficiency engine technologies. Diesel engines dominate the heavy duty market and significant segments of the global light duty market due to their intrinsically higher thermal efficiency compared to spark ignited (SI) engine counterparts. Predictive simulation tools can significantly reduce the time and cost associated with optimization of engine injection strategies, and enable investigation over a broad operating space unconstrained by availability of prototype hardware. In comparison with 0-D/1-D and 3-D simulations, Quasi-D models offer a balance between predictiveness and computational effort, thus making them very suitable for enhancing the fidelity of engine system simulation tools. A most widely used approach for diesel engine applications is a multi-zone spray and combustion model pioneered by Hiroyasu and his group. It divides diesel spray into packets and tracks fuel evaporation, air entrainment, gas properties and ignition delay (induction time) individually during the injection and combustion event. However, original sub-models are not well suited for modern diesel engines, and the main objective of this work is to develop a multi-zonal simulation capable of capturing the impact of high-injection pressures and Exhaust Gas Recirculation (EGR). In particular, a new spray tip penetration sub-model is developed based on measurements obtained in a high-pressure, high-temperature constant volume combustion vessel for pressures as high as 1450 bar. Next, ignition delay correlation is modified to capture the effect of reduced oxygen concentration in engines with EGR, and an algorithm considering the chemical reaction rate of hydrocarbon-oxygen mixture improves prediction of the heat release rates. Spray and combustion predictions were validated with experiments on a single-cylinder diesel engine with common rail fuel injection, charge boosting, and EGR.
Skip Nav Destination
ASME 2016 Internal Combustion Engine Division Fall Technical Conference
October 9–12, 2016
Greenville, South Carolina, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5050-3
PROCEEDINGS PAPER
Quasi-D Diesel Engine Combustion Modeling With Improved Diesel Spray Tip Penetration, Ignition Delay and Heat Release Sub-Models
Hirotaka Yamakawa,
Hirotaka Yamakawa
Hiroshima University, Hiroshima, Japan
Search for other works by this author on:
Keiya Nishida,
Keiya Nishida
Hiroshima University, Hiroshima, Japan
Search for other works by this author on:
Zoran Filipi
Zoran Filipi
Clemson University, Greenville, SC
Search for other works by this author on:
Shuonan Xu
Clemson University, Greenville, SC
Hirotaka Yamakawa
Hiroshima University, Hiroshima, Japan
Keiya Nishida
Hiroshima University, Hiroshima, Japan
Zoran Filipi
Clemson University, Greenville, SC
Paper No:
ICEF2016-9403, V001T06A015; 22 pages
Published Online:
December 1, 2016
Citation
Xu, S, Yamakawa, H, Nishida, K, & Filipi, Z. "Quasi-D Diesel Engine Combustion Modeling With Improved Diesel Spray Tip Penetration, Ignition Delay and Heat Release Sub-Models." Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference. ASME 2016 Internal Combustion Engine Division Fall Technical Conference. Greenville, South Carolina, USA. October 9–12, 2016. V001T06A015. ASME. https://doi.org/10.1115/ICEF2016-9403
Download citation file:
21
Views
Related Proceedings Papers
Related Articles
Quasi-Dimensional Diesel Engine Combustion Modeling With Improved Diesel Spray Tip Penetration, Ignition Delay, and Heat Release Submodels
J. Eng. Gas Turbines Power (November,2017)
Performance Characteristics of a Low Heat Rejection Direct-Injection Military Diesel Engine Retrofitted With Thermal Barrier Coated Pistons
J. Eng. Gas Turbines Power (July,2001)
Experimental Study of Oxygen-Enriched Diesel Combustion Using Simulated Exhaust Gas Recirculation
J. Eng. Gas Turbines Power (July,2009)
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies