Natural gas substitution for diesel can result in significant reductions in pollutant emissions. In addition, with a high ignition temperature and relatively low reactivity, natural gas can enable promising approaches to combustion engine design. In particular, the combination of low-reactivity natural gas and high-reactivity diesel may allow for optimal operation as a reactivity-controlled compression ignition (RCCI) engine, which has potential for high efficiency and low emissions. In this computational study, a lean mixture of natural gas is ignited by direct injection of diesel fuel in part-load operating condition in a model of the heavy-duty CAT3401 diesel engine. A multi-dimensional simulation was performed using a finite-volume computational code for fuel spray and combustion processes in the Reynolds-averaged Navier-Stokes (RANS) framework. Adaptive mesh refinement (AMR) and multi-zone reaction modeling enables simulation in a reasonable time. The latter approach avoids expensive kinetic calculations in every computational cell, with considerable speedup. The model produces encouraging agreement between the simulation and experimental data. For reasonable accuracy and computation cost, a minimum cell size of 0.2 millimeters is suggested for the natural gas-diesel (NGD) dual-fuel engine. The results reveal that in part-load operating condition, much of the CH4, which is used as surrogate fuel for natural gas, cannot burn. The main goal of this research work is to assess the possibility to improve the performance of Caterpillar-3401 engine in NGD dual-fuel operation by in-cylinder modification strategies. The results reveal that among different strategies, double injection of diesel fuel with an early main injection can reduce the unburned hydrocarbon (UHC) emission significantly.
Skip Nav Destination
ASME 2016 Internal Combustion Engine Division Fall Technical Conference
October 9–12, 2016
Greenville, South Carolina, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5050-3
PROCEEDINGS PAPER
Numerical Simulation of Dual-Fuel Compression-Ignition Engine in Part-Load Operating Condition With Double Injection
M. Razi Nalim
M. Razi Nalim
IUPUI, Indianapolis, IN
Search for other works by this author on:
Arash Jamali
IUPUI, Indianapolis, IN
M. Razi Nalim
IUPUI, Indianapolis, IN
Paper No:
ICEF2016-9374, V001T06A011; 8 pages
Published Online:
December 1, 2016
Citation
Jamali, A, & Nalim, MR. "Numerical Simulation of Dual-Fuel Compression-Ignition Engine in Part-Load Operating Condition With Double Injection." Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference. ASME 2016 Internal Combustion Engine Division Fall Technical Conference. Greenville, South Carolina, USA. October 9–12, 2016. V001T06A011. ASME. https://doi.org/10.1115/ICEF2016-9374
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Three-Dimensional Computational Fluid Dynamics Simulation and Mesh Size Effect of the Conversion of a Heavy-Duty Diesel Engine to Spark-Ignition Natural Gas Engine
J. Eng. Gas Turbines Power (June,2022)
Numerical Investigation of Equivalence Ratio Effects on a Converted Diesel Engine Using Natural Gas
J. Energy Resour. Technol (September,2022)
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
J. Energy Resour. Technol (September,2016)
Related Chapters
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Reciprocating Engine Performance Characteristics
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential