Reductions of Nitrogen oxides (NOx), sulphur oxides (SOx) and carbon dioxide (CO2) emissions have been acknowledged on the global level. The International Maritime Organization (IMO) has developed some mandatory or non-mandatory instruments such as codes, amendments, recommendations or guidelines to strengthen the emissions regulations on ships engaged in international voyage. However, it is difficult to meet the strengthened emissions regulations on the conventional marine diesel engines. Lean burn gas engines have been thus recently attracting attention in the maritime industry. The lean burn gas engines use natural gas as fuel and can simultaneously reduce both NOx and CO2 emissions. On the other hand, since methane is the main component of natural gas, the slipped methane which is the unburned methane emitted from the lean burn gas engines might have a potential impact on global warming. The authors investigated on a ship installed conventional marine diesel engines and lean burn gas engines, and have proposed a C-EGR (combined exhaust gas recirculation) system to reduce the slipped methane from the gas engines and NOx from marine diesel engines. This system consists of a marine diesel engine and a lean burn gas engine, and the exhaust gas emitted from the lean burn gas engine is provided to the intake manifold of the marine diesel engine by a blower installed between both engines. Since exhaust gas from the gas engine including slipped methane, this system could reduce both the NOx from the marine diesel engine and the slipped methane from the lean burn gas engine simultaneously. This paper introduces the details of the proposed C-EGR system, and presents the experimental results of emissions and engine performance characteristics on the C-EGR system. In the experiment, the diesel engine was operated at three load conditions of 25, 50 and 75% along with the propeller load curve. In order to keep the slipped methane concentration constant, the gas engine was operated at a constant load condition of 25%. The intake exhaust gas quantity which is supplied to the diesel engine was adjusted by the blower speed. As a result, it was confirmed that the C-EGR system attained more than 75% reduction of the slipped methane in the intake gas. In addition, the NOx emission from the diesel engine decreased with the effect of the EGR system. Also the fuel consumption of the diesel engine did not increase, because of the methane combustion in the intake gas.
Skip Nav Destination
ASME 2016 Internal Combustion Engine Division Fall Technical Conference
October 9–12, 2016
Greenville, South Carolina, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5050-3
PROCEEDINGS PAPER
Evaluation of Emissions Characteristics by Charging Exhaust Gas From Lean Burn Gas Engine Into Marine Diesel Engine
Yoshifuru Nitta,
Yoshifuru Nitta
National Maritime Research Institute, Tokyo, Japan
Search for other works by this author on:
Dong-Hoon Yoo,
Dong-Hoon Yoo
National Maritime Research Institute, Tokyo, Japan
Search for other works by this author on:
Sumito Nishio,
Sumito Nishio
National Maritime Research Institute, Tokyo, Japan
Search for other works by this author on:
Yasuhisa Ichikawa,
Yasuhisa Ichikawa
National Maritime Research Institute, Tokyo, Japan
Search for other works by this author on:
Koichi Hirata,
Koichi Hirata
National Maritime Research Institute, Tokyo, Japan
Search for other works by this author on:
Yudai Yamasaki
Yudai Yamasaki
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Yoshifuru Nitta
National Maritime Research Institute, Tokyo, Japan
Dong-Hoon Yoo
National Maritime Research Institute, Tokyo, Japan
Sumito Nishio
National Maritime Research Institute, Tokyo, Japan
Yasuhisa Ichikawa
National Maritime Research Institute, Tokyo, Japan
Koichi Hirata
National Maritime Research Institute, Tokyo, Japan
Yudai Yamasaki
University of Tokyo, Tokyo, Japan
Paper No:
ICEF2016-9350, V001T04A002; 10 pages
Published Online:
December 1, 2016
Citation
Nitta, Y, Yoo, D, Nishio, S, Ichikawa, Y, Hirata, K, & Yamasaki, Y. "Evaluation of Emissions Characteristics by Charging Exhaust Gas From Lean Burn Gas Engine Into Marine Diesel Engine." Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference. ASME 2016 Internal Combustion Engine Division Fall Technical Conference. Greenville, South Carolina, USA. October 9–12, 2016. V001T04A002. ASME. https://doi.org/10.1115/ICEF2016-9350
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Evaluation of Emissions Characteristics of Marine Diesel Engine Intake of Exhaust Gas of Lean Burn Gas Engine
J. Eng. Gas Turbines Power (February,2018)
Air Separation Membranes: An Alternative to EGR in Large Bore Natural Gas Engines
J. Eng. Gas Turbines Power (August,2010)
Computationally Efficient Whole-Engine Model of a Cummins 2007 Turbocharged Diesel Engine
J. Eng. Gas Turbines Power (February,2010)
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Conclusions
Clean and Efficient Coal-Fired Power Plants: Development Toward Advanced Technologies