An enhanced heat release analysis method is proposed to investigate the NOx emission reduction potential in diesel low temperature combustion and the combustion of premixed ethanol ignited by diesel injections. The heat release analysis from the in-cylinder pressure is a commonly applied diagnostic tool to gain insights in various aspects of combustion, such as start of combustion, ignition delay, combustion phasing, and combustion duration. However, these parameters are more qualitative than quantitative when they are correlated to engine efficiency and emissions. The results are often inconsistent at different engine operating conditions, such as different intake pressure levels, EGR rates and engine loads.

In this work, the authors proposed a new parameter named as peak of combustion acceleration, which is the maximum of the first derivative of the heat release rate over an engine cycle. It was observed that the peak of combustion acceleration had a close correlation with the emissions of smoke and NOx at different engine loads and in the combustion of both diesel LTC and premixed ethanol ignited by diesel injections. With the test engine platform, the NOx emission reduced to lower than 50 ppm when the peak of combustion acceleration was less than 25 for diesel LTC and 35 for premixed ethanol ignited by diesel injections. The detailed cylinder pressure sampling and treatment processes were described in this paper. The impact of cycle to cycle variation in the cylinder pressure on the calculation of the peak of combustion acceleration was discussed. The peak of combustion acceleration and the corresponding engine crank angle from each individual engine cycle were calculated and the statistic performance of these parameters was evaluated. The comparison indicated an acceptable consistency between the results from individual engine cycle and from the averaged engine cycles. The proposed peak of combustion acceleration can be potentially integrated in the engine control as an indication of the NOx reduction potential.

This content is only available via PDF.
You do not currently have access to this content.