Thermal Barrier Coatings (TBC) applied to in-cylinder surfaces of a Low Temperature Combustion (LTC) engine provide opportunities for enhanced cycle efficiency via two mechanisms: (i) positive impact on thermodynamic cycle efficiency due to combustion/expansion heat loss reduction, and (ii) enhanced combustion efficiency. Heat released during combustion elevates TBC surface temperatures, directly impacting gas-wall heat transfer. Determining the magnitude and phasing of the associated TBC surface temperature swing is critical for correlating coating properties with the measured impact on combustion and efficiency. Although fast-response thermocouples provide a direct measurement of combustion chamber surface temperature in a metal engine, the temperature and heat flux profiles at the TBC-treated gas-wall boundary are difficult to measure directly. Thus, a technique is needed to process the signal measured at the sub-TBC sensor location and infer the corresponding TBC surface temperature profile. This task can be described as an Inverse Heat Conduction Problem (IHCP), and it cannot be solved using the conventional analytic/numeric techniques developed for ‘direct’ heat flux measurements.

This paper proposes using an Inverse Heat Conduction solver based on the Sequential Function Specification Method (SFSM) to estimate heat flux and temperature profiles at the wall-gas boundary from measured sub-TBC temperature. The inverse solver is validated ex situ under HCCI like thermal conditions in a custom fabricated radiation chamber where fast-response thermocouples are exposed to a known heat pulse in a controlled environment. The analysis is extended in situ, to evaluate surface conditions in a single-cylinder, gasoline-fueled, HCCI engine. The resulting SFSM-based inverse analysis provides crank angle resolved TBC surface temperature profiles over a host of operational conditions.

Such metrics may be correlated with TBC thermophysical properties to determine the impact(s) of material selection on engine performance, emissions, heat transfer, and efficiencies. These efforts will also guide next-generation TBC design.

This content is only available via PDF.
You do not currently have access to this content.