Durability is a prime concern in the design of hydraulic systems and fuel injectors [1–3] thus an accurate prediction of impact velocities between components and the flow through them is essential to assessing concepts. Simulation of these systems is difficult because the geometries are complex, some volumes go to zero as the components move, and the flow at a single operating condition generally spans Reynolds numbers less than 1 to more than 104[4–8]. As a result of these challenges, experimental testing of prototypes is the dominant method for comparing concepts. This approach can be effective but is far more costly, time consuming, and less flexible than the ability to run simulations of concepts early in the design cycle.

A validated model of a fuel injector built from publicly available data [1] is used to present a new approach to modelling hydraulic systems which overcomes many of these obstacles. This is accomplished by integrating several commercially available tools to solve the physics specific to each area within the fuel injector. First, the fuel injector is simulated using a 3D CFD simulation integrated with a 1D CFD system model. The flow in various regions of the injector is then analyzed to determine if the fluid models in these areas can be simplified based on the flow regime. Based on this analysis, a combination of models is assembled to improve the quality of the simulation while decreasing the time required to run the model.

The fuel injector is simulated using a multibody dynamics model coupled to a reluctance network model of the solenoid and several fluid models. The first is a 3D CFD simulation which uses novel mesh refinement techniques during runtime to ensure high mesh quality throughout the motion of components, to resolve the velocity profile of laminar flows, and to satisfy the requirements of the RNG k-ε turbulence model and wall functions. This approach frees the analyst from defining the mesh before runtime and instead allows the mesh to adapt based on the flow conditions in the simulation. Due to the highly efficient meshing algorithm employed, it is possible to re-mesh at each timestep thus ensuring a high quality structured mesh throughout the simulation duration. Then a 3D FEM solution to the Reynolds Equation and a statistical contact model is employed to solve for the squeeze films between components and to allow separation and contact between bodies in the control valve. These detailed simulations are integrated with a 1D flow model of the fuel injection system.

The results from the detailed coupled simulations are compared to the results from simpler 1D models and measured data to illustrate under which operating conditions a more advanced technique incorporating 3D CFD is worth the additional computational expense versus a traditional 1D model.

This content is only available via PDF.
You do not currently have access to this content.