Recent engine developments towards higher loads (downsizing) and thinner oil films have increased the severity of plain bearing operating conditions 1. These factors, combined with lower viscosity oils, have resulted in a greater sensitivity of bearings to damage by foreign debris particles. Traditional highly embeddable materials, such as lead, are being progressively phased out. This lead-free trend observed in the passenger car market is likely to spread to the truck market in the future. As a result, it is becoming increasingly challenging to balance the conflicting hard and soft requirements of bearing materials. Although new generations of bearing materials, particularly polymeric overlays, have shown excellent fatigue and wear capabilities 2, they would benefit from enhanced embeddability properties. This demand has led MAHLE to take a new approach with the development of a polymeric overlay material that has both hard and soft characteristics. This newly developed soft-phase co-polymer resin has been synthesized from monomers selected to give the desired properties. Conventional Polyamide-imide (PAI) monomers have been combined with Polydimethylsiloxane (PDMS) macromonomers. PDMS was selected to improve embeddability as it is softer and offers more flexibility than PAI. Via a polymerization reaction, chains of hard, fatigue resistant PAI are alternately combined with short chains of PDMS. This produces a polymer matrix which has a very fine distribution of soft phase due to the micro-phase segregation created as the soft and hard segments of neighboring polymer chains preferentially align with each other 3, 4. The relative lengths of the hard and soft sections can be ‘tuned’ to produce domains of differing size and therefore adjust the balance of properties. Experiments have been carried out varying the overall percentage of PDMS and also with the molecular weight of the PDMS segments. Initial embeddability testing has shown an improvement in embedment over current polymer products and further work is ongoing to optimize this new resin system.
Skip Nav Destination
ASME 2015 Internal Combustion Engine Division Fall Technical Conference
November 8–11, 2015
Houston, Texas, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5728-1
PROCEEDINGS PAPER
Improved Embeddability for Polymeric Bearing Overlays Available to Purchase
David Latham,
David Latham
MAHLE Engine Systems, Rugby, UK
Search for other works by this author on:
Ronald Brock
Ronald Brock
MAHLE Engine Components Inc., Farmington Hills, MI
Search for other works by this author on:
David Latham
MAHLE Engine Systems, Rugby, UK
Ian Laing
MAHLE Engine Systems, Rugby, UK
Ronald Brock
MAHLE Engine Components Inc., Farmington Hills, MI
Paper No:
ICEF2015-1047, V002T07A005; 8 pages
Published Online:
January 12, 2016
Citation
Latham, D, Laing, I, & Brock, R. "Improved Embeddability for Polymeric Bearing Overlays." Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference. Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development. Houston, Texas, USA. November 8–11, 2015. V002T07A005. ASME. https://doi.org/10.1115/ICEF2015-1047
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Improved Embeddability for Polymeric Bearing Overlays
J. Eng. Gas Turbines Power (September,2016)
Related Chapters
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Unbalance
Fundamentals of Rotating Machinery Diagnostics
Pipeline Integrity
Pipeline Design & Construction: A Practical Approach, Third Edition