For a pilot-main injection strategy in a single cylinder light duty diesel engine, the dwell between the pilot- and main-injection events can significantly impact combustion noise. As the solenoid energizing dwell decreases below 200 μs, combustion noise decreases by approximately 3 dB and then increases again at shorter dwells. A zero-dimensional thermodynamic model has been developed to capture the combustion-noise reduction mechanism; heat-release profiles are the primary simulation input and approximating them as top-hat shapes preserves the noise-reduction effect. A decomposition of the terms of the underlying thermodynamic equation reveals that the direct influence of heat-release on the temporal variation of cylinder-pressure is primarily responsible for the trend in combustion noise. Fourier analyses reveal the mechanism responsible for the reduction in combustion noise as a destructive interference in the frequency range between approximately 1 kHz and 3 kHz. This interference is dependent on the timing of increases in cylinder-pressure during pilot heat-release relative to those during main heat-release. The mechanism by which combustion noise is attenuated is fundamentally different from the traditional noise reduction that occurs with the use of long-dwell pilot injections, for which noise is reduced primarily by shortening the ignition delay of the main injection. Band-pass filtering of measured cylinder-pressure traces provides evidence of this noise-reduction mechanism in the real engine.

When this close-coupled pilot noise-reduction mechanism is active, metrics derived from cylinder-pressure such as the location of 50% heat-release, peak heat-release rates, and peak rates of pressure rise cannot be used reliably to predict trends in combustion noise. The quantity and peak value of the pilot heat-release affect the combustion noise reduction mechanism, and maximum noise reduction is achieved when the height and steepness of the pilot heat-release profile are similar to the initial rise of the main heat-release event. A variation of the initial rise-rate of the main heat-release event reveals trends in combustion noise that are the opposite of what would happen in the absence of a close-coupled pilot. The noise-reduction mechanism shown in this work may be a powerful tool to improve the tradeoffs among fuel efficiency, pollutant emissions, and combustion noise.

This content is only available via PDF.
You do not currently have access to this content.