Reactivity Controlled Compression Ignition (RCCI) combustion in a light-duty multi-cylinder engine over transient operating conditions using fast response exhaust UHC1, NO and PM measurement instruments was investigated. RCCI has demonstrated improvements in efficiency along with low NOx and PM emissions by utilizing in-cylinder fuel blending, generally using two fuels with different reactivity in order to optimize stratification. In the present work, a “single-fuel” approach for RCCI combustion using port-injected gasoline and direct-injected gasoline mixed with a small amount of the cetane improver 2-ethylhexyl nitrate (EHN) was studied with custom designed, compression ratio of 13.75:1, pistons under transient conditions. The EHN volume percentage in the mixture for the direct-injected fuel was set at 3%. In an experimental investigation, comparisons were made to transient RCCI combustion operation with gasoline/diesel. The experiments were performed over a step load change from 1 to 4 bar brake mean effective pressure (BMEP) at constant 1,500 rev/min on a General Motors Z19DTH 1.9 liter diesel engine The transients were conducted by changing the accelerator pedal command to provide a desired torque output with a DRIVVEN engine control unit (ECU) that replaced the original Bosch ECU. All relevant engine parameters are adjusted accordingly, based on 2D-tables. Previous to the transient engine operation, 4 steady-state points were used to obtain performance and emission values. Engine calibration at these 4 points, as well as the interpolation of the intermediate points, allowed for smooth operation during the instantaneous step changes. Differences between the steady-state and transient results indicate the complexity of transient operation and show the need for additional controls to minimize undesirable effects. The steady-state points were calibrated by modifying the fuel injection strategy (actual Start of Injection (aSOI) timing, port-fuel injection (PFI) fraction, etc.), EGR and rail pressure in order to obtain predefined values for the crank angle at 50% of total heat release (CA50). Furthermore, emission targets (HC1 < 1500ppmC3, NO < 10ppm, FSN < 0.1 with a maximum pressure rise rate < 10bar/deg) and noise level targets (<95dB) for RCCI combustion were maintained during the calibration and mapping. The tests were performed with a closed-loop (CL) calibration by using a next-cycle (NC) controller to adjust the PFI ratio of each cycle in order to reach the steady-state CA50 values in the table. The results show that single-fuel RCCI operation can be achieved, but requires significant alteration of the operating conditions, and NOx emissions were significantly elevated for gasoline/gasoline-EHN operation. While combustion phasing could not be matched, UHC1 emissions were at a similar level as for gasoline/diesel combustion. It is expected that the implementation of different injection strategies and boosted operation, combined with use of higher compression ratio pistons in order to compensate for the lower reactivity direct injection (DI) fuel, could raise the potential for improved performance.
Skip Nav Destination
ASME 2015 Internal Combustion Engine Division Fall Technical Conference
November 8–11, 2015
Houston, Texas, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5727-4
PROCEEDINGS PAPER
Transient “Single-Fuel” RCCI Operation With Customized Pistons in a Light Duty Multi-Cylinder Engine
Christopher W. Gross,
Christopher W. Gross
University of Wisconsin – Madison, Madison, WI
Search for other works by this author on:
Rolf D. Reitz
Rolf D. Reitz
University of Wisconsin – Madison, Madison, WI
Search for other works by this author on:
Christopher W. Gross
University of Wisconsin – Madison, Madison, WI
Rolf D. Reitz
University of Wisconsin – Madison, Madison, WI
Paper No:
ICEF2015-1051, V001T03A008; 12 pages
Published Online:
January 12, 2016
Citation
Gross, CW, & Reitz, RD. "Transient “Single-Fuel” RCCI Operation With Customized Pistons in a Light Duty Multi-Cylinder Engine." Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference. Volume 1: Large Bore Engines; Fuels; Advanced Combustion. Houston, Texas, USA. November 8–11, 2015. V001T03A008. ASME. https://doi.org/10.1115/ICEF2015-1051
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Low NO x and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels
J. Eng. Gas Turbines Power (September,2010)
PCCI Control Authority of a Modern Diesel Engine Outfitted With Flexible Intake Valve Actuation
J. Dyn. Sys., Meas., Control (September,2010)
Numerical and Experimental Study on the Impact of Mild Cold Exhaust Gas Recirculation on Exhaust Emissions in a Biodiesel-Fueled Diesel Engine
J. Eng. Gas Turbines Power (November,2021)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Reciprocating Engine Performance Characteristics
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)