Large commercial ships such as container vessels and bulk carriers are propelled by low-speed, uniflow scavenged two-stroke diesel engines. The integral in-cylinder process in this type of engine is the scavenging process, where the burned gas from the combustion process is evacuated through the exhaust valve and replaced with fresh air for the subsequent compression stroke. The scavenging air enters the cylinder via inlet ports which are uncovered by the piston at bottom dead center (BDC). The exhaust gas is then displaced by the fresh air. The scavenging ports are angled to introduce a swirling component to the flow. The in-cylinder swirl is beneficial for air-fuel mixture, cooling of the cylinder liner and minimizing dead zones where pockets of exhaust gas are trapped. However, a known characteristic of swirling flows is an adverse pressure gradient in the center of the flow, which might lead to a local deficit in axial velocity and the formation of central recirculation zones, known as vortex breakdown. This paper will present a CFD analysis of the scavenging process in a MAN B&W two-stroke diesel engine. The study include a parameter sweep where the operating conditions such as air amount, port timing and scavenging pressure are varied. The CFD model comprise the full geometry from scavenge receiver to exhaust receiver. Asymmetric inlet and outlet conditions is included as well as the dynamics of a moving piston and valve. Time resolved boundary conditions corresponding to measurements from an operating, full scale production, engine as well as realistic initial conditions are used in the simulations. The CFD model provides a detailed description of the in-cylinder flow from exhaust valve opening (EVO) to exhaust valve closing (EVC). The study reveals a close coupling between the volume flow (delivery ratio) and the in-cylinder bulk purity of air which appears to be independent of operating conditions, rpm, scavenge air pressure, BMEP etc. The bulk purity of air in the cylinder shows good agreement with a simple theoretical perfect displacement model.
Skip Nav Destination
ASME 2015 Internal Combustion Engine Division Fall Technical Conference
November 8–11, 2015
Houston, Texas, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-5727-4
PROCEEDINGS PAPER
Parametric Study of the Scavenging Process in Marine Two-Stroke Diesel Engines
Fredrik Herland Andersen,
Fredrik Herland Andersen
MAN Diesel & Turbo SE, Copenhagen, Denmark
Technical University of Denmark, Kgs. Lyngby, Denmark
Search for other works by this author on:
Stefan Mayer
Stefan Mayer
MAN Diesel & Turbo SE, Copenhagen, Denmark
Search for other works by this author on:
Fredrik Herland Andersen
MAN Diesel & Turbo SE, Copenhagen, Denmark
Technical University of Denmark, Kgs. Lyngby, Denmark
Stefan Mayer
MAN Diesel & Turbo SE, Copenhagen, Denmark
Paper No:
ICEF2015-1075, V001T01A004; 9 pages
Published Online:
January 12, 2016
Citation
Andersen, FH, & Mayer, S. "Parametric Study of the Scavenging Process in Marine Two-Stroke Diesel Engines." Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference. Volume 1: Large Bore Engines; Fuels; Advanced Combustion. Houston, Texas, USA. November 8–11, 2015. V001T01A004. ASME. https://doi.org/10.1115/ICEF2015-1075
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Examination of Initialization and Geometric Details on the Results of CFD Simulations of Diesel Engines
J. Eng. Gas Turbines Power (April,2011)
PCCI Control Authority of a Modern Diesel Engine Outfitted With Flexible Intake Valve Actuation
J. Dyn. Sys., Meas., Control (September,2010)
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
J. Energy Resour. Technol (November,2019)
Related Chapters
Alternative Systems
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
Later Single-Cylinder Engines
Air Engines: The History, Science, and Reality of the Perfect Engine
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables