The unstable surface wave on a liquid sheet produced by an air-blast atomizer during primary breakup process was investigated by numerical simulation. The results of simulation were verified by comparison of primary breakup time and breakup length with accessible experimental data reported in technical papers. The frequency characteristics of stream-wise unstable wave at different axial locations were investigated by applying Discrete Fourier Transform (DFT). It was found that when there is no disturbance induced by internal flow, there is no specific frequency which is favored by shear instability near the nozzle exit, and the characteristic frequency of the dominant wave decreases along stream-wise direction due to the decrease of relative velocity. By applying Discrete Particle Method (DPM), the motion of fluid particles inside the liquid sheet was able to be tracked, and the Lagrangian characteristics of fluid particles can be partially revealed. The growth of stream-wise unstable wave was found to possess strong spatial characteristics by investigating the pathlines and streaklines of fluid particles. A rough evaluation for the stream-wise speed of fluid particles and the propagation velocity of unstable wave showed that fluid particles move faster than unstable wave in stream-wise direction, thus, relative motion exists between fluid particles and stream-wise wave. This relative motion could lead to huge acceleration of fluid particles, which could trigger Rayleigh-Taylor (RT) instability to induce transverse disintegration. Some complex behaviors of fluid particles inside the liquid sheet were observed, e.g. eddy-like structures formed by fluid particles.
Skip Nav Destination
ASME 2014 Internal Combustion Engine Division Fall Technical Conference
October 19–22, 2014
Columbus, Indiana, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-4617-9
PROCEEDINGS PAPER
Numerical Investigation of the Unstable Wave on a Planar Liquid Sheet Produced by an Air-Blast Atomizer
Chia-fon F. Lee,
Chia-fon F. Lee
Tsinghua University, Beijing, China
University of Illinois at Urbana-Champaign, Champaign, IL
Search for other works by this author on:
Timothy H. Lee
Timothy H. Lee
Tsinghua University, Beijing, China
University of Illinois at Urbana-Champaign, Champaign, IL
Search for other works by this author on:
Hua Zhou
Tsinghua University, Beijing, China
Chia-fon F. Lee
Tsinghua University, Beijing, China
University of Illinois at Urbana-Champaign, Champaign, IL
Timothy H. Lee
Tsinghua University, Beijing, China
University of Illinois at Urbana-Champaign, Champaign, IL
Paper No:
ICEF2014-5651, V002T06A016; 8 pages
Published Online:
December 9, 2014
Citation
Zhou, H, Lee, CF, & Lee, TH. "Numerical Investigation of the Unstable Wave on a Planar Liquid Sheet Produced by an Air-Blast Atomizer." Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference. Volume 2: Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development; Keynote Papers. Columbus, Indiana, USA. October 19–22, 2014. V002T06A016. ASME. https://doi.org/10.1115/ICEF2014-5651
Download citation file:
27
Views
Related Proceedings Papers
Related Articles
Large Eddy Simulation of a Flow Past a Free Surface Piercing Circular Cylinder
J. Fluids Eng (March,2002)
Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay Alaska
J. Offshore Mech. Arct. Eng (November,2010)
Linear and Nonlinear Wave Models Based on Hamilton’s Principle and Stream-Function Theory: CMSE and IGN
J. Offshore Mech. Arct. Eng (May,2010)
Related Chapters
Numerical Simulation of Internal Flow for Nozzle on Gasoline Direct Injection Engine
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Numerical Simulation Research on a Fixed Bed Gasifier
International Conference on Information Technology and Management Engineering (ITME 2011)