This paper presents an experimental study on controlled ASSCI (Assisted Spark Stratified Compression Ignition) for engine knock suppression in a GDI engine with high compression ratio. The direct injection is used for forming desired stoichiometric stratified mixture at WOT condition without turbo-charging. The engine is filled with 20% cooled external EGR and the ignition timing is maintained at MBT point. The combustion characteristics of the desired stoichiometric stratified mixture show two-stage heat release, where the first stage is caused by spark ignition and the second stage is due to moderate auto-ignition. Compared with engine knock, the second stage heat release of controlled ASSCI shows smooth pressure curve without pressure oscillation. This is due to the low energy density mixture around the cylinder wall caused by cooled external EGR. The stratified mixture could suppress knock. Fuel economy and combustion characteristics of the baseline and the controlled ASSCI combustion were compared. The baseline GDI engine reaches a maximum of 8.9 bar BMEP with BSFC of 291 g/(kWh), the controlled ASSCI combustion achieves a maximum of 8.3 bar BMEP with BSFC of 256 g/(kWh), improving the fuel economy over 12% while maintaining approximately the same power. CA50 (the crank angle of 50% heat release) of the controlled ASSCI is detected at 8.4° CA ATDC, which is 17.4° CA advanced than that of the baseline while the combustion duration of the controlled ASSCI is 52.84dG CA, 16.6° CA longer than that of the baseline caused by diluted mixture and two-stage heat release. The COV of the controlled ASSCI is 1.4%, 2.1% lower than that of the baseline. The peak pressure (Pmax) and the maximum pressure rise rate (PRRmax) of the controlled ASSCI are 59.7 bar and 2.2 bar/° CA, 22.9 bar and 1.5 bar/° CA higher than that of the baseline respectively. The crank angle of Pmax and PRRmax of the controlled ASSCI are 11° CA ATDC and −1° CA ATDC, 15.4° CA and 17.2° CA earlier than that of the baseline. The results show that controlled ASSCI with two-stage heat releases is a potential combustion strategy to suppress engine knock while achieving high efficiency of the high compression ratio gasoline engine.

This content is only available via PDF.
You do not currently have access to this content.