The effect of compression on a swirling/tumbling flow is studied using Large-Eddy Simulations (LES). In this study the geometry investigated is a cylinder with an artificially created swirling/tumbling motion. During compression the evolution of turbulence and vorticity are investigated. An increase of turbulence and vorticity is observed and linked to vorticity-dilatation interaction. It is shown that for swirling/tumbling flows turbulent kinetic energy available at Top Dead Center (TDC) is introduced by the piston through the vorticity-dilatation interaction and that turbulence increases independently of the presence of instability of the large scale flow structures.
Volume Subject Area:
Numerical Simulation
This content is only available via PDF.
Copyright © 2013 by ASME
You do not currently have access to this content.