Producer gas, any of a variety of gases generated from biomass gasification, is a renewable gaseous fuel that can be burned in gas engines for power production. Producer gas consists primarily of methane, hydrogen, carbon monoxide, carbon dioxide, and nitrogen. These gas blends can be problematic as a fuel for natural gas engines due to widely varying composition and significantly different fuel properties than natural gas. Characterization of combustion properties of different producer gas compositions is critical if the gas engine is to be operated reliably and at the greatest efficiency possible. A sample space of 35 producer gas blends consisting of distinct percentages of combustible gases (methane, hydrogen, and carbon monoxide) and diluent (carbon dioxide and nitrogen) is created to provide a basis for methane number testing. A test cell is established to mix producer gas blends of desired constituent makeup for consumption in a Waukesha F2 Cooperative Fuel Research (CFR) engine to directly measure methane number for each blend. Additional measurements include combustion pressure statistics, fuel consumption, and power output. Methane number is correlated to combustion pressure statistics and producer gas properties. Methane number measurements are compared with predictions using the software AVL Methane, often employed by engine manufacturers to characterize gaseous fuels. Measured methane number shows a strong correlation to 0–10% and 10–90% burn durations. The predicted methane number values from AVL Methane are significantly different than measured methane number in many cases. The error in the prediction is strongly dependent on the amount of carbon monoxide and hydrogen in the producer gas.

This content is only available via PDF.
You do not currently have access to this content.