A control-oriented model and its associated tuning methodology is presented for the air path of a six cylinder 13 L diesel engine equipped with an asymmetric twin-scroll turbine, wastegate (WG), and exhaust gas recirculation (EGR). This model is validated against experimental engine data and shows good agreement. The small scroll of the asymmetric twin scroll turbine is fed by the exhaust of three cylinders via a split manifold that operates at higher pressure than the exhaust manifold feeding the larger turbine scroll. The asymmetric design with the high exhaust back pressure on three of the six cylinders gives the necessary EGR capability, with reduced pumping work, but leads to complex flow characteristics. The mean-value model describes the flows through the engine, the flow through the two turbine scrolls, the EGR flow, and the WG flow as they are defined, and defines the pressure of the manifolds they connect to. Using seven states that capture the dynamics of the pressure and composition in the manifolds and the speed of the turbo shaft, the model can be used for transient control, along with set point optimization for the EGR and WG flows for each speed and load condition. The relatively low order of the model makes it amenable to fast simulations, system analysis, and control design.

This content is only available via PDF.
You do not currently have access to this content.