With the increasingly stringent emissions and fuel economy standards, there is a need to develop new advanced in-cylinder sensing techniques to optimize the operation of internal combustion engine. In addition, reducing the number of on-board sensors needed for proper engine monitoring over the life time of the vehicle would reduce the cost and complexity of the electronic system.
This paper presents a new technique to enable one engine component, the fuel injector, to perform multiple sensing tasks in addition to its primary task of delivering the fuel into the cylinder. The injector is instrumented within an electric circuit to produce a signal indicative of some injection and combustion parameters in electronically controlled spark ignition direct injection (SIDI) engines. The output of the multi sensing fuel injector (MSFI) system can be used as a feedback signal to the engine control unit (ECU) for injection timing control and diagnosis of the injection and combustion processes. A comparison between sensing capabilities of the multi-sensing fuel injector and the spark plug-ion sensor under different engine operating conditions is also included in this study. In addition, the combined use of the ion current signals produced by the MSFI and the spark plug for combustion sensing and control is demonstrated.