The characteristics of combustion, emissions, and thermal efficiency of a diesel engine with direct injection neat n-butanol were investigated. Tests were conducted on a single cylinder water-cooled four stroke direct injection diesel engine. The engine ran at a load of 6.5 ∼ 8.0 bar IMEP at 1500 rpm engine speed and the injection pressure was controlled to 900 bar. The intake boost pressure, injection timing and EGR rate were adjusted to investigate the engine performance. The test results showed that significantly longer ignition delays were possible when using butanol compared to diesel fuel. Butanol usage generally led to a rapid heat release in a short period, resulting in excessively high pressure rise rate. The pressure rise rate was reduced by retarding the injection timing. The butanol injection timing was limited by misfire and pressure rise rate. Thus, the ignition timing controllable window by injection timing was much narrower than that of diesel. The neat butanol combustion produced near zero soot and very low NOx emissions even at low EGR rate. The tests demonstrated that neat butanol had the potential to achieve ultra-low emissions. However, challenges related to reducing the pressure rise rate and improving the ignition controllability were identified.

This content is only available via PDF.
You do not currently have access to this content.