High exhaust emissions reduction efficiencies from a spark ignited (SI) internal combustion engine utilizing a Non Selective Catalyst Reduction (NSCR) catalyst system require complex fuel control strategies. The allowable equivalence ratio (Φ) operating range is very narrow where NSCR systems achieve high exhaust emission reduction efficiencies of multiple species. Current fuel control technologies utilizing lambda sensor feedback for natural gas spark ignited engines are reported to be unable to sustain these demands for extended operation periods and when transients are introduced. Lambda sensor accuracy is the critical issue with current fuel controllers. The goal of this project was to develop a minimization control algorithm utilizing an oxides of nitrogen (NOx) sensor installed downstream of the NSCR catalyst system for feedback air/fuel ratio control. Testing was performed on a 100kW rated natural gas Cummins-Onan generator set that was reconfigured to operate utilizing an electronic gas carburetor (EGC2) with lambda sensor feedback and high reduction efficiency NSCR catalyst system. The control algorithm was programmed utilizing a Labview interface that communicated with the electronic gas carburetor where the fuel trim adjustment was physically made. Improvement under steady state operation was observed. The system was also evaluated during load and fuel composition transients.

This content is only available via PDF.
You do not currently have access to this content.