Friction reduction within the power cylinder assembly of internal combustion engines continues to be a one of the foremost focuses of engine manufactures. In an effort to better address this topic previously developed bench test rigs, such as the Falex, Cameron-Plint, and EMA-LS9 [1,2], have been utilized. These devices were formerly focused solely on wear mechanisms and material compatibility. Current development of new piston ring coatings has demanded significant refinements to the previously mentioned EMA-LS9 test rig for specific frictional characteristic evaluations. These developments have allowed for coefficient of friction ranking between various piston ring materials in addition to the influence and surface finish on coefficient of friction.

This paper examines how the test rig is utilized to characterize upper compression ring materials, surface treatments, and the impact of surface finish. The significance of these results will be examined as it applies to analytical evaluations. From these calculations a demonstration of the effect of surface finish on ring dynamics and gas flow, as well as future piston ring coating developments will be discussed.

This content is only available via PDF.
You do not currently have access to this content.