Previous research indicates that the low temperature combustion (LTC) is capable of producing ultra-low nitrogen oxides (NOx) and soot emissions. The LTC in diesel engines can be enabled by the heavy use of exhaust gas recirculation (EGR) at moderate engine loads. However, when operating at higher engine loads, elevated demands of both intake boost and EGR levels to ensure ultra-low emissions make engine controllability a challenging task. In this work, a multi-fuel combustion strategy is implemented to improve the emission performance and engine controllability at higher engine loads. The port fueling of ethanol is ignited by the direct injection of diesel fuel. The ethanol impacts on the engine emissions, ignition delay, heat-release shaping and cylinder-charge cooling have been empirically analyzed with the sweeps of different ethanol-to-diesel ratios. Zero-dimensional phenomenological engine cycle simulations have been conducted to supplement the empirical work. The multi-fuel combustion of ethanol and diesel produces lower emissions of NOx and soot while maintaining the engine efficiency. The experimental set-up and study cases are described and the potential for the application of ethanol-to-diesel multi-fuel system at higher loads has been proposed and discussed.

This content is only available via PDF.
You do not currently have access to this content.