A cavitation model has been developed for the internal two-phase flow of diesel and biodiesel fuels in fuel injectors under high injection pressure conditions. The model is based on the conventional single-fluid mixture approach with modification in the phase change rate expressions and local mean effective pressure, considering the effects of viscous stresses and turbulent pressure fluctuations, and also takes into account the effects of turbulence, compressibility and wall roughness. The model is validated by comparing the model predictions of probable cavitation regions, velocity distribution, fuel mass flow rate and pressure with the experimental measurement available in literature. It is found that cavitation inception for biodiesel occurs at a higher injection pressure, compared to diesel, due to its lower saturation pressure. However, supercavitation occurs for both diesel and biodiesel at high injection pressures. RNG k–ε model for turbulence modeling is reliable by comparing its performance with realizable k–ε and SST k–ω models. The effect of liquid phase compressibility becomes considerable for very high injection pressures. Wall roughness is not an important factor for cavitation in fuel injectors.

This content is only available via PDF.
You do not currently have access to this content.