Next generation passive prechamber spark plugs for high BMEP natural gas engines require long ignition delay for durability, fast combustion for efficiency, and low COV for lean engine operation. Additionally, a successful plug should have long life, low cost, and have a robust knock margin, with best-in-class NOx vs. fuel consumption.
This paper discusses the underlying physics of the novel passive prechamber spark plug, the Woodward–Lean Quality Plug (WW-LQP.) The WW-LQP has demonstrated good ignition delay, fast combustion, and low COV at λ > 1.8+, while improving fuel consumption by more than 1% on a lean natural gas engine.
The key operating principles are developed for achieving complete combustion of the prechamber “charge”, leading to high prechamber pressure rise and resulting in high velocity turbulent flame jets, which in-turn provides for fast combustion in the main chamber. The design physics are verified by CFD simulations and on-engine experiments, including pressure measurements in both the prechamber and main combustion chamber.