The accumulation of lubricant-derived ash in diesel particulate filters (DPF) adversely affects engine efficiency, and is the single most important factor limiting the filter’s useful service life. The location of the ash deposits in the DPF, whether accumulated in a layer along the channel walls or packed in a pug at the end of the channels, plays a crucial role in determining the extent to which the ash impacts filter performance. This work presents results of targeted experiments designed to carefully track the evolution of the ash deposit formation and accumulation processes. Specially-formulated lubricants containing only calcium, zinc, or magnesium additives were used as chemical tracers and applied to load the same DPF in carefully designed time-sequence variations. Subsequent filter post-mortem analysis utilized scanning electron microscopy in conjunction with energy dispersive x-ray analysis to identify the chemical tracers in the ash layer and channel end-plugs. The results provide a quantitative measure of ash build-up along the channel walls, and the subsequent transport and formation of ash plugs at the end of the DPF channels. Studies with these additive tracers also showed large differences in DPF pressure drop as a function of ash chemistry. In general, calcium- and magnesium-based ash resulted in the largest increase in filter pressure drop, while ash containing primarily zinc compounds exhibited little increase in pressure drop for the same ash level in the DPF. Furthermore, despite being formulated to the same 1% total sulfated ash level, differences in ash accumulation rates between each of the lubricants provide additional insight into the magnitude of individual additives’ impact on DPF performance. Although the ash problem presents a significant challenge to lubricant and additive formulators and engine and aftertreatment system manufacturers alike, these results enhance the fundamental understanding of how ash is accumulated and distributed in the DPF. Further, the results are useful to understand the manner in which the accumulated ash affects exhaust flow restriction and filter pressure drop, as well as catalyst performance. Eventually, means of controlling both the location and packing characteristics of the ash deposits may be developed to extend DPF service life and minimize the impact of the accumulated ash on filter performance.
Skip Nav Destination
ASME 2011 Internal Combustion Engine Division Fall Technical Conference
October 2–5, 2011
Morgantown, West Virginia, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-4442-7
PROCEEDINGS PAPER
Investigation of Ash Formation, Accumulation, and Distribution in Diesel Particulate Filters Using Lubricant Additive Tracers
Alexander Sappok,
Alexander Sappok
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Victor W. Wong,
Victor W. Wong
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Ryan Morrow,
Ryan Morrow
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Ethan Zisholtz,
Ethan Zisholtz
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Isaac Doustar,
Isaac Doustar
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Ifran Govani
Ifran Govani
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Alexander Sappok
Massachusetts Institute of Technology, Cambridge, MA
Victor W. Wong
Massachusetts Institute of Technology, Cambridge, MA
Ryan Morrow
Massachusetts Institute of Technology, Cambridge, MA
Ethan Zisholtz
Massachusetts Institute of Technology, Cambridge, MA
Isaac Doustar
Massachusetts Institute of Technology, Cambridge, MA
Ifran Govani
Massachusetts Institute of Technology, Cambridge, MA
Paper No:
ICEF2011-60072, pp. 585-599; 15 pages
Published Online:
February 3, 2012
Citation
Sappok, A, Wong, VW, Morrow, R, Zisholtz, E, Doustar, I, & Govani, I. "Investigation of Ash Formation, Accumulation, and Distribution in Diesel Particulate Filters Using Lubricant Additive Tracers." Proceedings of the ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASME 2011 Internal Combustion Engine Division Fall Technical Conference. Morgantown, West Virginia, USA. October 2–5, 2011. pp. 585-599. ASME. https://doi.org/10.1115/ICEF2011-60072
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Lubricant-Derived Ash Properties and Their Effects on Diesel Particulate Filter Pressure-Drop Performance
J. Eng. Gas Turbines Power (March,2011)
Effects of B20 on Emissions and the Performance of a Diesel Particulate Filter in a Light-Duty Diesel Engine
J. Eng. Gas Turbines Power (November,2010)
Endothermic Phenomena in Diesel Particulate Filters During Regeneration
J. Eng. Gas Turbines Power (July,2003)
Related Chapters
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition
The Thermo —Mechanical Analysis of Mechanical Packing (SEAL), Using Finite Element Method (FEM) — Results and Conclusions
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Optimization of an Irregular 2D Packing Problem by a Genetic-Based Heuristic Algorithm
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)