This paper investigates the effect of air inlet temperature on the auto-ignition of fuels that have different CN and volatility in a single cylinder diesel engine. The inlet air temperature is varied over a range of 30°C to 110°C. The fuels used are ultra-low-sulfur-diesel (ULSD), JP-8 (two blends with CN 44.1 & 31) and F-T SPK. Detailed analysis is made of the rate of heat release during the ignition delay period, to determine the effect of fuel volatility and CN on the auto-ignition process. A STAR-CD CFD model is applied to simulate the spray behavior and gain more insight into the processes that immediately follow the fuel injection including evaporation, start of exothermic reactions and the early stages of combustion. The mole fractions of different species are determined during the ignition delay period and their contribution in the auto-ignition process is examined. Arrhenius plots are developed to calculate the global activation energy for the auto-ignition reactions of these fuels. Correlations are developed for the ID and the mean air temperature and pressure.

This content is only available via PDF.
You do not currently have access to this content.