A new approach to account for finite thermal conductivity, finite mass diffusivity and turbulence effects within atomizing liquid sprays at high pressure condition is presented in this paper. The finite conductivity model is based on a newly developed two-layer film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal conductivity [1]. The present paper extends the formulation to model the multi-component mass diffusivities within the droplet phase at high pressures but less than components critical pressures. An approximate solution to the quasi-steady energy equation was used to derive an explicit expression for the heat flux from the surrounding gas to the droplet–gas interface, with inter-diffusion of fuel vapor and the surrounding gas taken into account. The Peng-Robinson equation of state (EOS) is used for extension of the model to the high pressures. The latent heat of vaporization and fuel enthalpies are also corrected for high pressure. The model includes the non-ideal gas and liquid behavior, and variable thermo-transport properties including their dependence on pressure and temperature. For this study a mixture of decane and hexadecane fuel droplet was considered. Predictions of the high-pressure single droplet model are in good agreement with the available data in literature.

This content is only available via PDF.
You do not currently have access to this content.