Low temperature diesel combustion offers an opportunity to simultaneously and substantially reduce exhaust nitrogen oxides and particulate matter emissions. One issue that remains an area of investigation is the improvement of engine efficiency (i.e., specific fuel consumption) for the novel mode of combustion. The objective of this article is to assess the several parameters (i.e., friction, pumping work, combustion phasing, heat transfer rate, and combustion efficiency) that affect the brake fuel conversion efficiencies of a medium-duty diesel engine as its combustion mode is transitioned from conventional to low temperature. The analysis reveals that, in this study’s development of low temperature combustion, late combustion phasing is the primary factor causing a decrease in brake fuel conversion efficiency. To enable low temperature combustion, combustion is retarded to a point where peak rate of heat release occurs at around 24° after top dead center. Such late combustion misses the opportunity to utilize the full expansion stroke of the piston. Although exhaust hydrocarbon and carbon monoxide concentrations increase as a result of the later-phased low temperature combustion mode, combustion efficiency only drops to around 90%. This decrease in combustion efficiency accounts for only about 18.7% of the corresponding decrease in brake fuel conversion efficiency (the balance decrease being caused by the later-phased combustion). Other factors that typically deteriorate brake fuel conversion efficiency (i.e., pumping work, friction, and rate of heat transfer) are all decreased with this study’s development of low temperature combustion. It is important to note that other implementations of low temperature combustion (e.g., advanced timing low temperature combustion) may not necessarily realize the same reductions in brake fuel conversion efficiency, or reductions may not necessarily be caused by the same dominant factors that are observed in this study’s later-phased low temperature combustion mode.
Skip Nav Destination
ASME 2010 Internal Combustion Engine Division Fall Technical Conference
September 12–15, 2010
San Antonio, Texas, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-4944-6
PROCEEDINGS PAPER
Efficiency Considerations of Later-Phased Low Temperature Diesel Combustion Available to Purchase
Bryan M. Knight,
Bryan M. Knight
Texas A&M University, College Station, TX
Search for other works by this author on:
Joshua A. Bittle,
Joshua A. Bittle
Texas A&M University, College Station, TX
Search for other works by this author on:
Timothy J. Jacobs
Timothy J. Jacobs
Texas A&M University, College Station, TX
Search for other works by this author on:
Bryan M. Knight
Texas A&M University, College Station, TX
Joshua A. Bittle
Texas A&M University, College Station, TX
Timothy J. Jacobs
Texas A&M University, College Station, TX
Paper No:
ICEF2010-35070, pp. 359-368; 10 pages
Published Online:
January 10, 2011
Citation
Knight, BM, Bittle, JA, & Jacobs, TJ. "Efficiency Considerations of Later-Phased Low Temperature Diesel Combustion." Proceedings of the ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASME 2010 Internal Combustion Engine Division Fall Technical Conference. San Antonio, Texas, USA. September 12–15, 2010. pp. 359-368. ASME. https://doi.org/10.1115/ICEF2010-35070
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Comparison of Filter Smoke Number and Elemental Carbon Mass From Partially Premixed Low Temperature Combustion in a Direct-Injection Diesel Engine
J. Eng. Gas Turbines Power (October,2011)
Numerical Investigation on Energetic, Combustion, and Emissions Parameters of a Diesel Engine Fueled With Diesel/Butanol and Diesel/Pentanol
J. Thermal Sci. Eng. Appl (August,2024)
Investigations on
a Compression Ignition Engine Using Animal Fats and Vegetable Oil as
Fuels
J. Energy Resour. Technol (June,2012)
Related Chapters
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Alternative Systems
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential