Empirical and theoretical studies are made between the inlet and central heating schemes in a flow reversal embedment of diesel aftertreatment converters in order to investigate the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The periodic flow reversal converter is found effective to treat engine exhausts that are difficult to cope with conventional unidirectional flow converters. However, the previous work indicates that the exhaust temperature from modern diesel engines is commonly insufficient to sustain a high conversion or regeneration rate and thus supplemental heating techniques are commonly applied. A technique of fuelling at the central region of a flow-reversal embedment is found more energy-efficient to raise the temperature of the catalytic flow-bed and therefore to drastically reduce the supplemental heating to the substrate. An effective fuel delivery technique has been tested to improve the fuel dispersion of the central fuel delivery strategy at various engine-out exhaust temperatures, compositions, and flow rates.

This content is only available via PDF.
You do not currently have access to this content.