In this paper, cyclic variations in the combustion process of a single-cylinder HCCI engine operated with n-heptane were measured over a range of intake air temperatures and pressures, compression ratios, air/fuel ratios, and exhaust gas recirculation (EGR) rates. The operating conditions produced a wide range of combustion timings from overly advanced combustion where knocking occurred to retarded combustion where incomplete combustion was detected. Cycle-to-cycle variations were shown to depend strongly on the crank angle phasing of 50% heat release and fuel flow rate. Combustion instability increased significantly with retarded combustion phasing especially when the fuel flow rate was low. Retarded combustion phasing can be tolerated when the fuel flow rate is high. It was also concluded that the cyclic variations in imep are primarily due to the variations in the total heat released from cycle-to-cycle. The completeness of the combustion process in one cycle affects the in-cylinder conditions and resultant heat release in the next engine cycle.

This content is only available via PDF.
You do not currently have access to this content.