The objective of this research was to experimentally evaluate the effects of two biodiesel fuels with different viscosities on fuel injection characteristics using a light-duty, common-rail, diesel injection system. A pure biodiesel (B100) and a 50/50 blend of pure biodiesel and refined, bleached, and deodorized vegetable oil (B50V50) were compared with a laboratory diesel fuel equivalent (D100). The fuel viscosity ranged from 2.6 cSt (D100) to 10.9 cSt (B50V50). Three injection pressures and two injector nozzle geometries and surface finishes were also investigated. Measurements of the injected fuel quantity showed that as fuel viscosity increased, the injected volume decreased and the variability in the injected volume tended to increase. This effect was more significant in an injector nozzle with converging, highly hydro-ground holes than one with straight, lightly hydroground holes. The rate-of-injection (ROI) data were quite similar for D100 and B100 when using the straight, lightly hydro-ground nozzle. There is a marked reduction in peak injection rate for the B100, compared to D100, when the highly hydro-ground nozzle was utilized. With both nozzles, the B50V50 blend produced narrower ROI curves with peak injection rates equal to or exceeding those of D100 fuel. For all three fuels, the start-of-injection delay increased as fuel viscosity increased. The end-of-injection time was very similar for D100 and B100 but was advanced for the B50V50 blend.

This content is only available via PDF.
You do not currently have access to this content.