The piston ring-pack contributes a large portion of the mechanical losses in an internal combustion engine. In this study, the effects of lubricant viscosity are evaluated with the goal of reducing these mechanical losses. Oil viscosity affects friction directly in the hydrodynamic regime, where hydrodynamic friction increases with viscosity. It also influences boundary friction indirectly via oil film thickness — higher viscosity causes oil films to be thicker, which reduces asperity contact. At the optimum viscosity (the viscosity at which minimum friction losses are incurred) there is a balance between these hydrodynamic and boundary effects. As piston speed, ring loading, and other parameters change during the engine cycle, the optimum oil viscosity also changes. If the variation of viscosity could be controlled during the cycle, it could be maintained at an optimum at all times. In this study, several theoretical and realistic cases were studied to quantify the friction benefit that could be obtained if this were possible. Idealized cases with low viscosity near mid-stroke (to reduce hydrodynamic friction) and high viscosity near end-strokes (to reduce boundary contact) were considered, as were several more realistic cases based on temperature and shear-rate dependencies. It was found that, for the oil control ring studied, the effect on friction of keeping viscosity high near end-strokes is very small, and does not provide a substantial benefit (in terms of friction) over allowing viscosity to vary naturally with temperature and shear rate. Two mechanisms lead to the relatively small size of the friction benefit: the contribution to total cycle ring friction from the dead-center area is small, because of low piston speeds there; and any reduction in asperity contact due to increased viscosity is accompanied by an increase in hydrodynamic friction, which cancels out some of the benefit. Oil viscosity near mid-stroke, where most of the ring/liner friction is generated, is the dominant viscosity that controls the overall friction losses for the ring. Although its contribution to friction reduction is not large, maintaining high lubricant viscosity near dead-centers can lead to a reduction in wear in that region, because asperity contact decreases. For the ring-pack studied, a friction reduction of ∼7% is predicted when viscosity is reduced in the mid-stroke region (based on OCR effects alone). If end-stroke viscosity is also kept high, the end-stroke regions, where current engines experience the most wear, will see a reduction in asperity contact (although there will still be a slight wear increase in the mid-stroke). An end-stroke wear reduction of up to 25% is predicted by the current model.

This content is only available via PDF.
You do not currently have access to this content.