Waukesha Engine, Dresser, Inc., (Waukesha) entered into a program with the California Energy Commission (CEC) to develop and demonstrate a 500 kWe ultra-low emission, Advanced Reciprocating Internal Combustion Engine (ARICE) for power generation. The purpose of the program was to demonstrate a natural gas fueled engine with emissions control technology that could achieve the following ARICE goals: • Reduce specified emissions by 90%; • Increase thermal efficiency by 10%; • Reduce installed costs of Distributed Generation (DG) systems by 10%; • Maintain engine durability. All changes are with respect to current levels defined at the time the program began. To work towards meeting these program goals Waukesha partnered with two primary subcontractors, Southwest Research Institute (SwRI) and MIRATECH Corporation. The program was originally defined in two phases. In Phase I Waukesha would develop and demonstrate a cooled EGR system. In Phase II further enhancements would be applied to the cooled EGR system with the intent of achieving still further gains in efficiency and reductions in emissions. A cooled Exhaust Gas Recirculation (EGR) system was installed on a base Waukesha H24GSI engine. The diluent properties of the EGR added to the stoichiometric fuel-air charge reduce peak cylinder combustion temperature. The lower combustion temperatures result in lower NOx values without the need for excess air which would yield oxygen in the exhaust gas. The lack of oxygen in the exhaust gas allows the use of an efficient, cost-effective, three-way catalyst (TWC) to reduce all three primary emittants — NOx, CO, and unburned hydrocarbons. This paper describes the Phase I design and development of an ultra-low emission, natural gas engine operating at stoichiometric conditions with cooled EGR and a TWC. Hardware modifications to incorporate the cooled EGR system on the base engine are covered. The TWC and control system developed are briefly described. The EGR engine with control system and three-way catalyst successfully completed a 500 hour durability test at SwRI. Stable control of the engine across the load range and acceptable load response by the unit have been demonstrated. Very low emissions of the three primary pollutants were measured downstream of the catalyst both before and after the 500 hours of durability testing. The phase I emissions goals were easily met. Emission levels near the Phase II goals were achieved. The Phase I engine efficiency was increased 12% and BMEP was increased 33% compared to the baseline engine. Examination of the engine and systems after the 500 hour run did not show signs of unusual wear or deposits. The potential for a cooled EGR system to produce significantly reduced NOx in a reciprocating natural gas engine was demonstrated. Remaining challenges include the demonstration of consistent, long term emissions performance and the long term durability of engine systems and components operating with EGR.
Skip Nav Destination
ASME 2005 Internal Combustion Engine Division Fall Technical Conference
September 11–14, 2005
Ottawa, Ontario, Canada
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
0-7918-4736-5
PROCEEDINGS PAPER
Design and Development of Waukesha’s Stoichiometric, Cooled EGR Engine for the California ARICE Program
Robert W. Stachowicz,
Robert W. Stachowicz
Waukesha Engine, Dresser, Inc., Waukesha, WI
Search for other works by this author on:
David E. Watson,
David E. Watson
Waukesha Engine, Dresser, Inc., Waukesha, WI
Search for other works by this author on:
Donald M. Newburry,
Donald M. Newburry
MIRATECH Corporation, Tulsa, OK
Search for other works by this author on:
Timothy J. Callahan
Timothy J. Callahan
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Robert W. Stachowicz
Waukesha Engine, Dresser, Inc., Waukesha, WI
David E. Watson
Waukesha Engine, Dresser, Inc., Waukesha, WI
Donald M. Newburry
MIRATECH Corporation, Tulsa, OK
Timothy J. Callahan
Southwest Research Institute, San Antonio, TX
Paper No:
ICEF2005-1329, pp. 609-619; 11 pages
Published Online:
November 11, 2008
Citation
Stachowicz, RW, Watson, DE, Newburry, DM, & Callahan, TJ. "Design and Development of Waukesha’s Stoichiometric, Cooled EGR Engine for the California ARICE Program." Proceedings of the ASME 2005 Internal Combustion Engine Division Fall Technical Conference. ASME 2005 Internal Combustion Engine Division Fall Technical Conference (ICEF2005). Ottawa, Ontario, Canada. September 11–14, 2005. pp. 609-619. ASME. https://doi.org/10.1115/ICEF2005-1329
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Stoichiometric Operation of a Gas Engine Utilizing Synthesis Gas and EGR for NO x Control
J. Eng. Gas Turbines Power (October,2000)
Numerical and Experimental Study on the Impact of Mild Cold Exhaust Gas Recirculation on Exhaust Emissions in a Biodiesel-Fueled Diesel Engine
J. Eng. Gas Turbines Power (November,2021)
Related Chapters
Introduction
A Practical Guide to Avoiding Steam Purity Problems in the Industrial Plant (CRTD-35)
Structural Members in Bending
Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range
Incremental Model Adjustment
Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation, and Enabling Design of Experiments