A new wear model for piston ring and cylinder bore system has been developed to predict wear process with high accuracy and efficiency. It will save time and cost compared with experimental investigations. Surfaces of ring and bore were divided into small domains and assigned to corresponding elements in two-dimensional matrix. Fast Fourier Transform (FFT) and Conjugate Gradient Method (CGM) were applied to obtain pressure distribution on the computing domain. The pressure and film thickness distribution were provided by a previously developed ring/bore lubrication module. By changing the wear coefficients of the ring and bore with accumulated cycles, wear was calculated point by point in the matrix. Ring and bore surface profiles were modified when wear occurred. The results of ring and bore wear after 1 cycle, 10 cycles and 2 hours at 3600 rpm were calculated. They coincided well with the general tendency of wear in a ring and bore system.

This content is only available via PDF.
You do not currently have access to this content.