The intelligent control as fuzzy or artificial is based on either expert knowledge or experimental data and therefore it possesses intrinsic qualities like robustness and ease implementation. Lately, many researchers present studies aim to show that this kind of control can be used in practical applications such as the idle speed control problem in automotive industry. In this study, an estimation of an automobile three-way catalyst performance with artificial neural networks is presented. It may be an alternative approach for an on board diagnostic system (OBD) to predict the catalyst performance. This method was tested using data sets from two kind of catalysts, a brand new and an old one on a laboratory bench at idle speed. The catalyst operation during the “steady state” phase (the phase that the catalyst has reached its operating conditions and works normally) is examined. Further experiments are needed for different catalyst typed before the methods is proposed generally. It consists of 855 elements of catalyst inlet-outlet temperature difference (DT), hydrocarbons (HC), and carbon monoxide (CO) and carbon dioxide (CO2) emissions. The simulation: detects the values of HC, CO, CO2 using the DT as an input to our network forms a neural network. Results showed serious indications that artificial neural networks (or fuzzy logic control laws) could estimate the catalyst performance adequately depending their training process, if certain information about the catalyst system and the inputs and output of such system are known. In this study the “steady state” period experimental results are presented. In this paper the “steady state” period experimental results are presented.

This content is only available via PDF.
You do not currently have access to this content.