The performance and emissions of a single-cylinder, natural gas fueled engine using a pilot ignition strategy have been investigated. Small diesel pilots (2–3 percent on an energy basis), when used to ignite homogeneous natural gas-air mixtures, are shown to possess the potential for reduced NOx emissions while maintaining good engine performance. The effect of pilot injection timing, intake charge pressure, and charge temperature on engine performance and emissions with natural gas fueling was studied. With appropriate control of the above variables, engine-out brake specific NOx emissions could be reduced to the range of 0.07–0.10 g/kWh from the baseline diesel (with mechanical fuel injection) value of 10.5 g/kWh. For this NOx reduction, the decrease in fuel conversion efficiency from the baseline diesel value was approximately 1–2 percent. Total unburned hydrocarbon (HC) emissions and carbon monoxide (CO) emissions were higher with natural gas operation. Heat release schedules obtained from measured cylinder pressure data are also presented. The importance of pilot injection timing and inlet conditions on the stability of engine operation and knock are also discussed.

You do not currently have access to this content.