Methane fueled Homogeneous Charged Compression Ignition (HCCI) combustion is investigated using detailed kinetic modeling. Control of heat release rate is identified as the biggest challenge against HCCI operation. A new control strategy, hydrogen peroxide (H2O2) addition, along with intake mixture preheating, is proposed to resolve this problem. A single-zone perfectly stirred reactor type formulation is employed with detailed chemical kinetic mechanism to predict homogeneous gas-phase chemical kinetics. The effects of H2O2 addition on the performance parameters of a methane-fueled HCCI engine are simulated. The results show that HCCI performance can be improved radically by the addition of H2O2 since it lowers the ignition delay time substantially. The resulting NOx concentration in high IMEP operating conditions is significantly less than that emitted from conventional internal combustion engines. Possibility of increasing NOx emissions with increasing initial temperature has been shown. Reduction in carbon monoxide emission is predicted with the addition of H2O2 via the increased hydroxyl chemistry. More flexible control of HCCI operation is possible by regulating the amount of H2O2 added.

This content is only available via PDF.
You do not currently have access to this content.