Abstract

It is important provide mathematical functions able to fit with great precision experimental data on gases properties, in order to obtain reliable results when computerized models on IC engines are used.

On the basis of experimental data on equilibrium constants (for dissociation phenomena occurring during combustion process in IC engines) new mathematical functions have been determined to fit experimental data. In comparison to traditional fitting polynomials, these new mathematical functions present a great accuracy in matching experimental data. These new mathematical functions have the functional forms of a V order Logarithmic Polynomial, and their coefficients have been evaluated on the basis of the least square method. The new V order Logarithmic Polynomials have been determined for several dissociation reactions according to internal combustion processes applications.

V order Logarithmic Polynomials have been implemented also to describe the trend of specific heat at constant pressure Vs temperature and enthalpy Vs temperature. These new Logarithmic Polynomials have been calculated for several gases and fuels for IC engines applications.

The new Logarithmic Polynomials pointed out a better precision in comparison to the others polynomial functions used in literature, and the possibility to utilize a single Logarithmic Polynomial for a wide temperature range, according to a good accuracy with experimental data. Another advantage of the Logarithmic Polynomials is the possibility to extrapolate experimental data on a wide temperature range (25% of experimental T range) in order to supply to the experimental data shortage.

This content is only available via PDF.
You do not currently have access to this content.