Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-4 of 4
Power density
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Alain Marmier, Michael A. Fu¨tterer, Kamil Tucˇek, Han de Haas, Jim C. Kuijper, Jan Leen Kloosterman
Proc. ASME. HTR2008, Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1, 459-467, September 28–October 1, 2008
Paper No: HTR2008-58114
Abstract
Good safety characteristics are an outstanding feature of High Temperature Reactors (HTR): • The high graphite inventory in the core provides significant thermal inertia. Graphite also has a high thermal conductivity, which facilitates the transfer of heat to the reflector, and it can withstand high temperatures; • The strongly negative Doppler coefficient gives a negative feedback, such that the reactor shuts down by itself in overpower accidental conditions; • The high quality of fuel elements — tri-isotropic (TRISO) coated particles — minimizes operational and accidental fission gas release. The materials selected have resistance to high temperatures; • The low power density enables stabilization of core temperature significantly below the maximum allowable, even in case of severe accidents (such as loss-of-coolant accident). Together, these aspects significantly reduce the risk of massive fission product release, which is one of the attractive features of HTRs. The fuel that is currently used in pebble bed reactors such as AVR, HTR-10 and soon PBMR is based on a homogeneous distribution of coated particles within a fuel pebble. This homogenizes power density in the pebble, but creates a radial temperature gradient across the fuel sphere. Fuel particles placed at its centre has the highest temperature. Reducing the average temperature of particles would help preserve their integrity and maintain the resistance of the first barrier against fission product release. As early as the 1970s, attempts were made to reduce the peak fuel temperature by means of so-called “wallpaper fuel”, in which the fuel is arranged in a spherical shell within a pebble. At that time, the production process was not sufficiently mature and had caused unacceptable damage to the (less performing) BISO particles, which is why this fundamentally promising concept was abandoned. In this paper, proposals will be put forward to improve the production process. This paper further exploits the wallpaper concept, not only from the point of view of temperature reduction, but also for enhanced neutronic performance through improved neutron economy, resulting in reduced fissile material and/or enrichment needs or providing the potential to achieve higher burn-up. Parameters modified were the density of the central fuel-free graphite zone and the packing fraction of the fuel zone. It is demonstrated that this fuel type impacts positively on the fuel cycle, reduces production of minor actinides (MA) and improves the safety-relevant parameters of the reactor. A comparison of these characteristics with PBMR-type fuel is presented. The calculations were performed using Monte Carlo neutron transport and depletion codes MCNP/MCB and the deterministic code WIMS. By comparison with PBMR fuel, the “wallpaper design” of the fuel pebble results in an effective neutron multiplication coefficient increase (by about 2%), which is combined with a decrease of between 3 and 15% in MA production. An improved neutron economy of the heterogeneous design enables enrichment of the “wallpaper type” of fuel to be reduced by more than 6%.
Proceedings Papers
Proc. ASME. HTR2008, Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1, 25-32, September 28–October 1, 2008
Paper No: HTR2008-58093
Abstract
For the Pebble Bed Modular Reactor (PBMR) Demonstration Power Plant (DPP) several neutron flux measurements are made, both within the Reactor Pressure Vessel (RPV) and outside the RPV. The measurements within the RPV are performed by the Core Structures Instrumentation (CSI) system. While those outside the RPV are performed by the Nuclear Instrumentation System (NIS). The PBMR has a long annular core with a relative low power density, requiring flux monitoring over the full 11 M of the active core region. The core structures instrumentation measures the neutron flux in the graphite reflector. Two measurement techniques are used; Fission Chamber based channels with high sensitivity for initial fuel load and low power testing and SPND channels for measurements at full and near full power operation. The CSI flux monitoring supports data acquisition for design Verification and Validation (V&V), and the data will also be used for the characterization of the NIS for normal reactor start-ups and low power operation. The CSI flux measurement channels are only required for the first few years of operation; the sensors are not replaceable. The Nuclear Instrumentation System is an ex core system that includes the Post Event Instrumentation. Due to the long length of the PBMR core, the flux is measured at several axial positions. This is a fission chamber based system; full advantage is taken of all the operating modes for fission chambers (pulse counting, mean square voltage (MSV), and linear current). The CSI flux monitoring channels have many technical and integration challenges. The environment where the sensors and their associated signal cables are required to operate is extremely harsh; temperature and radiation levels are very high. The selection and protection of the fission chambers warranted special attention. The selection criteria for sensors and cables takes cognizance of the fact that the assemblies are built in during the assembly of the reactor internal structures, and that they are not replaceable. This paper describes the challenges in the development of the monitoring systems for the measurement of neutron flux both within the RPV and the ex core region. The selection of detector configuration and the associated signal processing will be discussed. The use of only analogue signal processing techniques will also be elaborated on.
Proceedings Papers
Proc. ASME. HTR2008, Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 2, 323-328, September 28–October 1, 2008
Paper No: HTR2008-58098
Abstract
In order to support the Next Generation Nuclear Plant (NGNP) Program 2018 deployment schedule, the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program must reduce the AGR fuel irradiation testing time in the Advanced Test Reactor (ATR) from approximately 2 1/2 calendar years to 1 1/2 calendar years. The AGR fuel irradiation testing requirements are: (a) burn-up of at least 14% FIMA; (b) Fast neutron fluence (E > 0.18 MeV) – maximum < 5.1 × 10 25 n/m 2 ; (c) limit of fission power density is 350 W/cc; and (d) irradiation time < 1 1/2 calendar years. The accelerated testing could be accomplished by utilizing the ATR North East flux trap (NEFT) position, which can provide more control of the thermal neutron flux rate than the ATR B-10 position currently being used for the AGR-1 fuel testing, which is regulated to achieve the fuel temperature and burn-up rate requirements. In addition, the Fast (E > 1.0 MeV) to Thermal (E < 0.625 eV) neutron flux ratio (F/T) for the NEFT is much harder (higher) than the F/T ratio for the B-10 position. Thus, an appropriate configuration of Beryllium (Be) and water will need to be determined in order to soften (lower) the F/T ratio to the desired value. The proposed AGR 7-position fuel test configuration in the NEFT will utilize a graphite holder consisting of six fuel specimen positions arranged around the perimeter of the graphite holder with a seventh fuel specimen position in the center of the holder. To soften the neutron spectrum in the fuel compacts, the water volume in the outer water annulus can be increased. To reduce the compact power density, a hafnium filter could be incorporated around the graphite holder. After several trials, a hafnium filter with a thickness of 0.008 inches appeared to adequately reduce the power density to achieve the fuel testing requirements. It was also determined that the chosen beryllium-tube and water annulus configuration would adequately soften the neutron spectrum to achieve the fuel testing requirement. This neutronics study is based upon typical ATR cycle operation of 50 effective full power days (EFPD) per cycle for seven proposed irradiation cycles, and a NE lobe power of the 14 MW. The MCWO-calculated fuel compact power density, burnup (% FIMA), and fast neutron fluence (E > 0.18 MeV) results indicate that the average fuel compact burnup and fast neutron fluence reach 14.79% FIMA and 4.16 × 10 25 n/m 2 , respectively. The fuel compact peak burnup reached 16.68% FIMA with corresponding fast neutron fluence for that fuel compact of 5.06 × 10 25 n/m 2 , which satisfied the fuel testing requirements. It is therefore concluded that accelerating the AGR fuel testing using the proposed AGR 7-position fuel test configuration in the NEFT is very feasible.
Proceedings Papers
Proc. ASME. HTR2008, Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 2, 255-263, September 28–October 1, 2008
Paper No: HTR2008-58318
Abstract
The modular Pebble Bed Advanced High Temperature Reactor (PB-AHTR), with a nominal power output of 900 MWth, is the most recent US Berkeley design for a liquid fluoride salt cooled reactor. Due to the high volumetric heat capacity of the primary coolant, the PB-AHTR operates with a high power density core with a similar average coolant temperature as in modular helium reactors. The reactivity control system for the PB-AHTR uses a novel buoyantly-driven shutdown rod system that can be actively or passively activated during reactor transients. In addition to a traditional active insertion mechanism, the new shutdown rod system is designed to also operate passively, fulfilling the role of a reserve shutdown system. The physical response of the shutdown rod was simulated both computationally and experimentally, using scaling arguments where applicable, with an emphasis on key phenomena identified by a preliminary PIRT study. This paper discusses preliminary results from this effort.