Considering the need to reduce waste production and greenhouse emissions by still keeping high energy efficiency, various 4th generation nuclear energy systems have been proposed. As far as graphite moderated reactors are concerned, one of the key issues is the large volumes of irradiated graphite encountered (1770 m3 for fuel elements and 840 m3 for reflector elements during the lifetime (60 years) of a single reactor module [1]). With the objective to reduce volume of waste in the HTR concept, it is very important to be able to separate the fuel from low level activity graphite. This requires to separate TRISO particles from the graphite matrix with the sine qua non condition to not break TRISO particles in case of future embedding of particles in a matrix for disposal. According to National Regulatory Systems, in case of limited graphite waste production or of short duration HTR projects (e.g. in Germany), direct disposal without separation is acceptable. Nevertheless, in case of large scale deployment of HTR technology, such approach is not economical and sustainable. Previous attempts in graphite management (furnace, fluidised bed and laser incinerations and encapsulation matrices) dealt with graphite matrix only. These are the reasons why we studied the management of irradiated compact-type fuel element. We simulated the presence of fuel in the particles by using ZrO2 kernels. Compacts with ZrO2 TRISO particles were manufactured by AREVA NP. Two original methods have been studied. First, we tested high pressure jet to erode graphite and clean TRISO particles. Best erosion rate reached about 0.18 kg/h for a single nose ending. Examination of treated graphite showed a mixture of undamaged TRISO particles, particles that have lost the outer pyrolytic carbon layer and ZrO2 kernels. Secondly, we studied the thermal shock method by immerging successively graphite into liquid nitrogen and hot water to cause fracturing of the compact. This produced particles and graphite fragments with diameter ranging from several centimetres to less than 500 μm. This relatively simple and economic method may potentially be considered as a pretreatment step and be coupled with other method(s) before reprocessing and recycling for example.
Skip Nav Destination
Fourth International Topical Meeting on High Temperature Reactor Technology
September 28–October 1, 2008
Washington, DC, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4855-5
PROCEEDINGS PAPER
New Methods for HTR Fuel Waste Management
Fabrice Guittonneau,
Fabrice Guittonneau
Subatech, Nantes, France
Search for other works by this author on:
Abdesselam Abdelouas,
Abdesselam Abdelouas
Subatech, Nantes, France
Search for other works by this author on:
Manoe¨l Dialinas,
Manoe¨l Dialinas
Subatech, Nantes, France
Search for other works by this author on:
Franc¸ois Cellier
Franc¸ois Cellier
AREVA NP, Lyon, France
Search for other works by this author on:
Fabrice Guittonneau
Subatech, Nantes, France
Abdesselam Abdelouas
Subatech, Nantes, France
Bernd Grambow
Subatech, Nantes, France
Manoe¨l Dialinas
Subatech, Nantes, France
Franc¸ois Cellier
AREVA NP, Lyon, France
Paper No:
HTR2008-58112, pp. 709-713; 5 pages
Published Online:
July 1, 2009
Citation
Guittonneau, F, Abdelouas, A, Grambow, B, Dialinas, M, & Cellier, F. "New Methods for HTR Fuel Waste Management." Proceedings of the Fourth International Topical Meeting on High Temperature Reactor Technology. Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 2. Washington, DC, USA. September 28–October 1, 2008. pp. 709-713. ASME. https://doi.org/10.1115/HTR2008-58112
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Nuclear Fission, Today and Tomorrow: From Renaissance to Technological Breakthrough (Generation IV)
J. Pressure Vessel Technol (August,2011)
NO x and N 2 O Formation Mechanisms—A Detailed Chemical Kinetic Modeling Study on a Single Fuel Particle in a Laboratory-Scale Fluidized Bed
J. Energy Resour. Technol (September,2001)
Biomass Externally Fired Gas Turbine Cogeneration
J. Eng. Gas Turbines Power (July,1996)
Related Chapters
Moving Up the Waste Hierarchy: Modeled Emissions Reductions from Applying Sustainable Waste Management Practices in the United States
Proceedings of the 2022 EEC/WTERT Conference
New Generation Reactors
Energy and Power Generation Handbook: Established and Emerging Technologies
Introduction
Nuclear Reactor Thermal-Hydraulics: Past, Present and Future