As highly efficient advanced nuclear systems, Generation IV Very High Temperature Reactors (VHTR) can be considered in a variety of configurations for electricity generation and process heat applications. Simultaneous delivery of electricity, low-temperature process heat (for potable water production, district heating, etc.) and high temperature process heat (for hydrogen production, etc.) by a single cogeneration system offers unique deployment options as “all-in-one” power stations. This paper is focused on the VHTR-based systems for autonomous co-generation applications. The analysis is being performed within the scope of the U.S. DOE NERI project on utilization of higher actinides (TRUs and partitioned MAs) as a fuel component for extended-life VHTR configurations. It accounts for system performance characteristics including VHTR physics features, control options and energy conversion efficiencies. Utilization of TRUs in VHTRs is explored to stabilize in-core fuel compositions (core self-stabilization) leading to extended single-batch OTTO (Once-Through-Then-Out) modes of operation without intermediate refueling.

This content is only available via PDF.
You do not currently have access to this content.